A, E, G, H, iFIT, EP series Rossi

ATEX Operating Instructions

Content

1 - General safety information	4
1.1 - Decomissionin, disposal and recycling	
1.2 - Residual risks	
1.3 - Safety	
2 - Operating instructions and limits of use	
2.1 - Use	
2.2 - Special conditions for a safe use	8
3 - Product identification	
3.1 - A series - Worm gear reducers and gearmotors	
3.2 - E series - Coaxial gear reducers and gearmotors	
3.3 - G series - Helical and bevel helical gear reducers and gearmotors	
3.4 - H series - Helical and bevel helical gear reducers	
3.5 - iFIT iC series - Helical inline gearmotors	13
3.6 - iFIT iO series - Bevel helical gearmotors	14
3.7 - EP series - In-line and right angle shaft gear reducers and gearmotors	16
4 - General product description	18
4.1 - General functions	18
4.2 - Materials	18
4.3 - Nominal data	19
4.4 - Nameplate	24
5 - How supplied	25
5.1 - Receipt	
5.2 - Lubricant	25
5.3 - Painting	
5.4 - Protections and packing	
6 – Lifting, handling and storage	
6.1 - Lifting and handling	
6.2 - Storing	
7 - Installation	
7.1 - Maintenance and cleaning	
7.2 - General	
7.3 - Initial inspection to be executed by skilled staff	
7.4 - Tightening torques for fastening bolts (feet, flange, accessories) and for plugs	
7.5 - Flange mounting	
7.6 - Pool Mounting	
7.7 - Shall mounting	
7.9 - Gear reducer assembly and disassembly (A, G, H series)	
7.10a - Axial fastening of gear reducer (A, G, H series)	
7.10b - Montaggio e fissaggio assiale riduttore (serie iFIT - iO)	
	Δ/
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series)	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series)	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series)	48 49
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series)	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device 7.15 - Verification of service factor fs required by the application	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device 7.15 - Verification of service factor f s required by the application 7.16 - Thermal power verification P t [kW] of gear reducer	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device 7.15 - Verification of service factor fs required by the application 7.16 - Thermal power verification Pt [kW] of gear reducer 8 - Lubrication	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends. 7.14 - Backstop device 7.15 - Verification of service factor f s required by the application 7.16 - Thermal power verification P t [kW] of gear reducer. 8 - Lubrication. 8.1 - General	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device 7.15 - Verification of service factor f s required by the application 7.16 - Thermal power verification P t [kW] of gear reducer 8 - Lubrication 8.1 - General 8.2 - Lubrication tables	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device 7.15 - Verification of service factor f s required by the application 7.16 - Thermal power verification P t [kW] of gear reducer 8 - Lubrication 8.1 - General 8.2 - Lubrication tables 8.3 - Extruder support lubrication (helical and bevel helical, sizes 100 4501) 9 - Motor assembly and disassembly 9.1 - General	48 49 54 56 57 59 64 65 66 67
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device 7.15 - Verification of service factor fs required by the application 7.16 - Thermal power verification Pt [kW] of gear reducer 8 - Lubrication 8.1 - General 8.2 - Lubrication tables 8.3 - Extruder support lubrication (helical and bevel helical, sizes 100 4501).	48 49 54 56 57 59 64 65 66 67
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device 7.15 - Verification of service factor f s required by the application 7.16 - Thermal power verification P t [kW] of gear reducer 8 - Lubrication 8.1 - General 8.2 - Lubrication tables 8.3 - Extruder support lubrication (helical and bevel helical, sizes 100 4501) 9 - Motor assembly and disassembly 9.1 - General 9.2 - Gearmotors with motor keyed onto hollow high speed of gear reducer 9.3 - Gearmotors with helical pinion keyed directly on motor shaft end	
7.11a - Fitting of gear reducer with key and locking rings or bush (A, G series) 7.11b - Keying with locking rings (EP series) 7.12 - Mounting of hollow low speed shaft with shrink disc (G, H, iFIT, EP series) 7.13 - Fitting of components to low and high speed shaft ends 7.14 - Backstop device 7.15 - Verification of service factor f s required by the application 7.16 - Thermal power verification P t [kW] of gear reducer 8 - Lubrication 8.1 - General 8.2 - Lubrication tables 8.3 - Extruder support lubrication (helical and bevel helical, sizes 100 4501) 9 - Motor assembly and disassembly 9.1 - General 9.2 - Gearmotors with motor keyed onto hollow high speed of gear reducer	48 49 54 56 57 59 64 65 67 67

10 - Cooling systems		71
 		
10.2 - Integrated fan cooling unit		71
	(G series)	
	(
11 - Accessories		
11.2 - Resistance thermometers (oil or bearings)		74
12 - Commissioning		
——————————————————————————————————————		
13 - Maintenance		
13.1 - General		83
. 9		
13.8 - Gear reducer troubles: causes and corrective action	าร	87
14 - ATEX checks and verifications		88
14.1 - Table of main installation checks and operations		88
14.2 - Table of commissioning checks and operations		89
14.3 - Table of checks and operations frequency during no	ormal running	90
15 - A series - Mounting positions, oil quantity and position	n of plugs	91
	GEARMOTORS	
	R REDUCERS and GEARMOTORS	
16 - E series - Mounting positions, oil quantity and position		
16.1 - Oil level (quantity) for coaxial GEAR REDUCERS and	d GEARMOTORS	94
	EAR REDUCERS and GEARMOTORS	
17 - G series - Mounting positions, oil quantity and positio		
	nelical GEAR REDUCERS and GEARMOTORS	
	d bevel helical GEAR REDUCERS and GEARMOTORS	
18 - H series - Mounting positions, oil quantity and position	• •	
19 - iFIT series - Mounting positions, oil quantity and posit		
	lline foot mounted GEARMOTORS iC	
	nline flange mounted GEARMOTORS iC	
	lical foot mounted GEARMOTORS iO	
	lical flange mounted GEARMOTORS iO	
	lical shaft mounted GEARMOTORS iO	
20 - EP series - Mounting positions, oil quantity and tanks		
Appendix		
•		
Facsimile EU Declaration of conformity		136

Operating instructions gear reducers and gearmotors complying with ATEX 2014/34/EU

A series Worm gear reducers and gearmotors

E series Coaxial gear reducers and gearmotors

G series Helical and bevel helical gear reducers and gearmotors (sizes 40 ... 401)

H series Helical and bevel helical gear reducers (sizes 4000 ... 8001)

iFIT series Helical inline gearmotors (**iC**), Bevel helical gearmotors (**iO**)

EP series Planetary gear reducers and gearmotors

1 - General safety information

This chapter provides information about handling, installation and maintenance of the gear reducers and gearmotors applied in potentially explosive environments ATEX).

All the people handling with these activities must carefully read all the following instructions and apply them rigorously.

The information and the data contained in this document correspond to the technical level reached at the moment the handbook is printed. Rossi reserves the right to introduce, without notice, the necessary changes for the increase of product performances.

1.1 - Decommissioning, disposal and recycling

Before decommissioning the gearbox or gearmotor, it should be rendered inactive by disconnecting any electrical contacts and draining it of lubricant, keeping in mind that waste oil has a strong environmental impact and therefore should not be dispersed into soil or surface water.

Decommissioning must be carried out by trained and experienced operators in compliance with applicable occupational health and safety and environmental protection laws.

The gearbox or gearmotor parts must be disposed of at authorized collection centers for waste treatment, recycling and disposal, according to the regulations in force in the country where the disposal will take place

Component	Material
Cylindrical gears with external (pinions and sprockets) and internal (planetary gears) teeth Bevel gears Worm gears: worm gear Shafts Roller Bearings Keys Shrink discs and hub clamps	Case hardening or tempering steel
Drive Unit Bases	Structural steel
Fan cover	Steel sheet
Fans	Aluminum or technopolymers
Torque arm	Structural steel or cast iron
Housing, covers, flanges (inlet and outlet) of the gearbox - Gearbox holders (planetary gearboxes)	Gray or spheroidal cast iron
Worm gears: worm wheels	Bronze and spheroidal cast iron
Seal rings	
O-ring	
V-ring	
Protective caps	Elastomers and steel
Connecting joints	Elastomers and steel
Lubricants	EP additive mineral oil
PAG-based synthetic oil (factory supply)	
PAO-based synthetic oil	
Synthetic grease for bearings, gears and seals	
Cooling coil	Copper or aluminum
Forced lubrication circuit: pipes and fittings	Steel or copper

Motor components	Material						
Housing - Shields - Flanges	Aluminum or cast iron						
Stator	Steel and copper						
Induced	Steel and aluminum						
Roller Bearings	Steel						
Seal rings	Elastomer and steel						
Brake	Steel, copper, plastics, elastomers						

Disposal of packaging materials

The materials that make up the packaging must be disposed of at authorized collection centers, giving preference to separate collection and recycling, in accordance with the legal provisions in force in the country where the disposal will take place; reference should also be made to the information contained on the environmental labeling, if any, on the packaging or available on digital channels (e.g., APPs, QR codes, websites);

Type of packaging	Material
Wooden crates, pallets, joists,	Wooden packaging
Cardboard packaging and boxes, sheets of cardboard and corrugated paper, curled paper,	Paper and cardboard packaging
Plastic packaging, barrier chess, bubble wrap, preformed	Plastic packaging

For information on the proper disposal of the gearbox or gearmotor, its components, and packing material, or on the nearest authorized collection centers for treatment, recycling, and disposal, contact your local Rossi branch.

1.2 - Residual risks

The equipment has been designed and manufactured according to state-of-the-art technology as per standards contained in "EU Declaration of conformity".

The application of such standards has allowed to reduce the intrinsic risks of the equipment type at an acceptable level.

Therefore, here following you will find the residual risks list the user will have to consider.

If the instructions and specific selection, installation, verification and maintenance instructions are not followed in zones with danger of explosion, the residual risk of causing an explosion would consequently increase.

The products supplied by Rossi have been designed and manufactured by the essential health and safety requirements of the Machinery Directive 2006/42/EC - Annex I.

The following table lists the residual hazards that the user is required to deal with by the instructions in this document and those that may be attached to the shipment.

Nature/Cause of Risk	Countermeasures
Installation and maintenance operations	The component shall be handled, installed, commissioned, operated, inspected, maintained, and repaired only by qualified responsible personnel who shall carefully read and strictly apply all instructions contained herein, those that may be attached to the shipment. He or she should also be specifically trained and experienced in recognizing the risks and potential hazardous situations (electrical or mechanical) associated with these products, such as, but not limited to: - Presence of electrical voltage; - Presence of temperature above 50 °C; - Presence of moving parts during operation; - Presence of suspended loads; - Presence of possible high sound level (> 85 dB (A). He or she should be equipped with appropriate personal protective equipment (PPE) and be familiar with and observe all applicable regulations regarding proper installation and current safety regulations to ensure the safety of people and avoid major damage to the machine or system.

Nature/Cause of Risk	Countermeasures				
Falling or projecting objects	For gearboxes equipped with backstop device provide a protection system against the projection of objects resulting from the breakage of the device itself				
	For gearboxes equipped with connection with joint (fast shaft and/or slow shaft) provide protections against the projection of objects resulting from the breakage of the joint itself.				
	For gearboxes with pendulum mounting provide appropriate safeties against: - The loosening or breaking of fixing screws; - The rotation or slipping of the gearbox from the machine pivot resulting from accidental breakage of the reaction constraint; - The accidental breakage of the machine pin.				
Moving elements	Provide any accident prevention guards for unused shaft ends and for possibly accessible fan cover passages (or others).				
	Any operation on the gearbox or gearmotor must be done with the machine stopped and disconnected and the gearbox or gearmotor cold.				
Temperature extremes	During operation, gearboxes may have hot surfaces (> 50 °C); before undertaking any operation, always wait until the gearbox or gearmotor has cooled down (wait about 1 to 3 hours depending on the size); if necessary, take a temperature survers on the surface of the gearbox or gearmotor near the high speed shaft. The same applies to the hydraulic coupling, if any.				
	After a period of operation, the reducer is subject to a slight internal overpressure which can cause burning fluid to leak out.				
	Therefore, wait until the gearbox has cooled down before loosening the plugs (of any kind); otherwise, use appropriate protection (PPE) against burns resulting from accidental contact with hot oil.				
	In all cases, always proceed with great care.				
Noise	Depending on the size, transmission ratio to the gearbox, type of service, and mounting system of the gearbox or gearmotor, the noise emission level may be more than 85 dB(A). Carry out field measures and, if necessary, equip the affected personnel with appropriate personal protective equipment (PPE).				
Changes that may compromise the safety of the equipment	Do not make structural changes to products supplied by Rossi (gearboxes, gearmotors, drive assembly, etc.) without prior approval from Rossi				
Use of substitute components with characteristics unsuitable for the application	Replacement parts must be those authorized by Rossi.				

1.3 - Safety

The paragraphs marked with symbols $\triangle \otimes$ shown below contain recommendations to be **strictly** respected in order to assure **personal safety** and to avoid any **heavy damages** to the machine or to the system (e.g.: works on live parts, on lifting machines, etc.).

Electric or mechanical situations of danger, e.g.:

- live parts;
- temperature higher than 50 °C;
- presence of rotating pieces during the running;
- suspended loads (lifting and handling);
- eventual high sound level (> 85 dB(A));

Safety instructions for the use in areas classified according to ATEX 2014/34/EC.

IMPORTANT: gear reducers and gearmotors supplied by Rossi are **components** and must be incorporated into machinery and **should not be commissioned before the machinery in which the coponents have been incorporated conforms to:**

- Machinery directive 2006/42/EC and subsequent updatings; in particular, possible safety guards for shaft ends not being used and for eventually accessible fan cover passages (or other) are the Buyer's responsibility;
- «Electromagnetic compatibility (EMC)» 2014/30/EC and subsequent updatings.

Attention! It is recommended to pay attention to all instructions of present handbook, all existing safety laws and standards concerning correct installation.

Whenever personal injury or property damage may occur, foresee adequate supplementary protection devices against:

- release or breakage of fastening screws;
- rotation or loosening of the gear reducer from shaft end of driven machine following to accidental breakage of the reaction arrangement;
- the accidental breakage of shaft end of driven machine.

If deviations from normal operation occur (temperature increase, unusual noise, etc) immediately switch off the machine.

Safety in installation

An incorrect installation, an improper use, the removing or disconnection of protection devices, the lack of inspections and maintenance, improper connections may cause severe personal injury or property damage. Therefore, the products must be moved, installed, commissioned, handled, controlled, serviced and repaired **exclusively by responsible qualified personnel**.

In the case of installation in places where there may be the formation of stray currents (eg: near electric railway networks, large welding plants, electrical installations with high currents and radio frequencies, etc.), it is appropriate to take adequate precautions to avoid consequences.

The skilled personnel must be **specifically instructed** and have the necessary experience to **recognize any risks** (see paragraph 1.2 - Residual Risks) connected with present products avoiding any possible emergencies.

In this regard, see the standard IEC / EN 60079-14 "Explosive atmospheres - Part 14: Design, selection and installation of electrical systems", in particular Annex F "knowledge, skills and competences of the responsible persons, of the operational and of the designers.

Gear reducers and gearmotors of present handbook are normally suitable for installations in **industrial areas**: additional protection measures, if necessary, must be adopted and assured by the personnel responsible for the installation.

Attention! Motors in non-standard design or with constructive variations may differ in the details from the ones described here following and may require additional information.

Attention! For the installation use and maintenance of the **electric motor** (standard, brake or non-standard motor) or of the possible motor-variator and/or the electric supply device (frequency converter, soft-start, etc.), and/or any optional electric devices (e.g.: independent cooling unit, etc.), consult the specific attached documentation. If necessary, require it.

Safety during maintenance

When operating on gear reducer or on components connected to it the **machine must be at rest**: disconnect motor (including auxiliary equipments) from power supply, gear reducer from load, be sure that safety systems are on against any accidental starting and, if necessary, pre-arrange mechanical locking devices (to be removed before commissioning).

Attention! During the running the gear reducers could have **hot surfaces**; Always wait that the gear reducer or the gearmotor to cool before carrying out any operations

ATEX requirements

For whatever operation (assembling, disassembling, cleanness, maintenance) use tools and procedures which will not cause explosion (e.g.: sparks). When using electric equipment (portable working lights, vacuum cleaner, etc.) be sure that they are cer tified according to ATEX directive and suitable to the area.

Whenever the gear reducer/gearmotor is disassembled, moved and mounted to another installation, or modified, e.g. with the application of a different motor (see table 7.1), **check whether it is compatible** with the new installation and classification of the area, as well as its suitability for the envisaged service as indicated by the service specifications (fs, radial loads, ch. 7.15), thermal power *P*t (ch. 7.16), radial loads, etc.).

When a bearing lubrication pump is present in G gear reducers ("P" code stated on name plate, see DESIGN) it is necessary **to avoid** input speeds lower than n1= 355 min-1, consult us if need may be.

This handbook «ATEX operating instructions» and its enclosures, if any, must be kept close to the gear reducer or gearmotor in order to be easily consulted.

Further technical documentation (e.g. catalogs) can be downloaded from our website www.rossi.com or can be directly required to Rossi. For any clarification and/or additional information consult Rossi and specify all name plate data.

2 - Application conditions and use limits

2.1 - Use foreseen

The gearboxes and gearmotors of the A, E, G, H, iC, EP series are intended to be used, in accordance with the data on the plate, in environments where during normal activities it is possible or probable the formation of an explosive atmosphere consisting of a mixture of air and flammable substances in the form of gases, vapors, mists (G) or air and combustible dusts (D).

Their use in underground areas of mines and in areas of surface installations of mines subject to risks deriving from firedamp and / or flammable dust (group I) is not permitted.

The intended use is in industrial applications - in the absence of vibrations (see chap. 7.3), nuclear radiations and magnetic fields - with ambient temperature -20 \div +60 °C¹), max relative humidity 80%, pressure 80 \div 110 [kPA] and oxygen percentage 21% (O₂) v/v and can be used in areas with explosion dangers classified as follows according to ATEX 2014/34/EU:

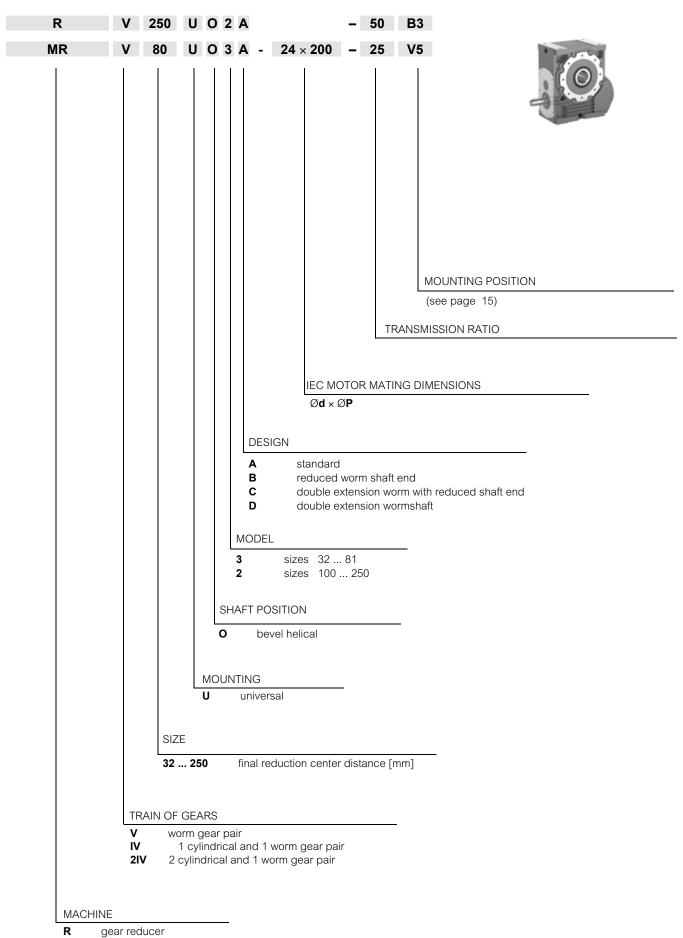
- for zone 1, 21, 2, 22 gear reducer and gearmotor without motor in **ATEX 2G, 2D design**
- for zone 2, 22 gear reducer and gearmotor without motor in ATEX 3G, 3D design
- 1) Temperatures outside the range 0 ÷ 40 °C require a technical evaluation of the specific case to be executed by Rossi.

In case of different ambient conditions, consult Rossi.

The specific mark relevant to explosion protection is to be completed with following data:

- maximum surface temperature and temperature class or
- maximum surface temperature or
- symbol "X" followed by the identification code of technical document to be referred to concerning running conditions.

2.2 - Special conditions for a safe use


- Before carrying out any operation, the user must carefully read this document (ATEX instructions for use) and any other supplementary technical documents attached;
- In the case of accessories, Rossi has the right to supply interchangeable probes such as functional technical specifications and connections, but with slightly modified case dimensions.
- When present, the user must connect the safety sensors of the protective liquid (temperature and / or lubricating oil level) and the temperatures of the bearings installed on the gearboxes and gearmotors to his own monitoring system and set the intervention thresholds, as indicated in the ATEX Instructions for Use (and any other supplementary technical documents attached). The signal deriving from the sensors must be used to interrupt the operation of the equipment automatically, making it safe. Operation cannot be restored automatically.
- When present, the user must connect the complete monitoring pressure switch of the PB parking brake to his control system for starting the machine. The intervention threshold must be set according to what is indicated in the ATEX instructions for use (and any other supplementary technical document attached).
- The user must regularly clean the external surfaces of the equipment to avoid dust deposits in layers with a thickness greater than 5 mm.

Running conditions must not exceed the limits stated on the name plate and those of the documentation enclosed, if any.

3 - Product identification

3.1 - A series - Worm gear reducers and gearmotors

MR gearmotor

3.2 - E series - Coaxial gear reducers and gearmotors

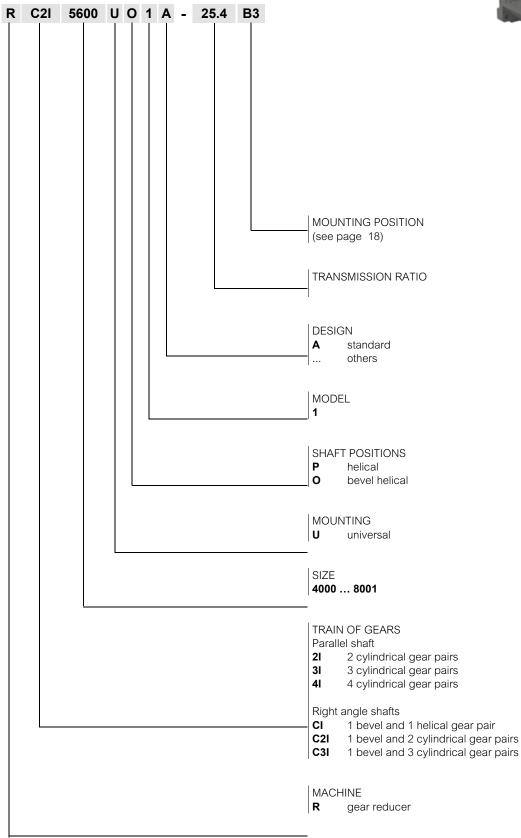
DESIGN A standard MOUNTING MOUNTING	50	U	C	2	2 /	N.	-	- 29.3	В	3							
(see page 16) TRANSMISSION RATIO IEC MOTOR MATING DIMENSIONS Ød × ØP DESIGN A standard MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]	50	U	C	2	2 4	4 - 19 ×	200 -	- 22.7	V	5						6	à
(see page 16) TRANSMISSION RATIO IEC MOTOR MATING DIMENSIONS Ød × ØP DESIGN A standard MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]														•			
(see page 16) TRANSMISSION RATIO IEC MOTOR MATING DIMENSIONS Ød × ØP DESIGN A standard MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]															1	al	
(see page 16) TRANSMISSION RATIO IEC MOTOR MATING DIMENSIONS Ød × ØP DESIGN A standard MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]																	
(see page 16) TRANSMISSION RATIO IEC MOTOR MATING DIMENSIONS Ød × ØP DESIGN A standard MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]																	
(see page 16) TRANSMISSION RATIO IEC MOTOR MATING DIMENSIONS Ød × ØP DESIGN A standard MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]										MOUN	NTING P	OSITION	N				
IEC MOTOR MATING DIMENSIONS Ød × ØP DESIGN A standard MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]									ļ.							_	
DESIGN A standard MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]								Т	RANS	SMISSIC	N RATIO	0				_	
DESIGN A standard MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]							IEC M		4 A T I N I A	C DIME	NICIONIC						
MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]									/IATING	G DIME	NSIONS	•					
MODEL 1, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]						DESIGN											
T, 2 standard SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]					l		standard		_								
SHAFT POSITION C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]					M	ODEL											
C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]				,	1,	2 star	ndard		-								
C coaxial MOUNTING U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]				S	НА	FT POSITIO	N										
U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]			L				<u> </u>			_							
U universal (sizes 50 180) P with feet (sizes 32 41) F with flange (sizes 32 41) SIZE 32 180 final reduction center distance [mm]			М	Ol.	JNT	ING											
SIZE 32 180 final reduction center distance [mm]		L	U P			universal with feet (sizes 32	2 41)									
32 180 final reduction center distance [mm]			Г			with Hang	e (SIZES	o∠ 41	')								
	'			80		final redu	ction cer	nter dist	ance [[mm]				_			
IN OF GEARS																	
	RAIN	OF	GI	EΑ	RS					_							
	Ē																

₹Rossi

gearmotor

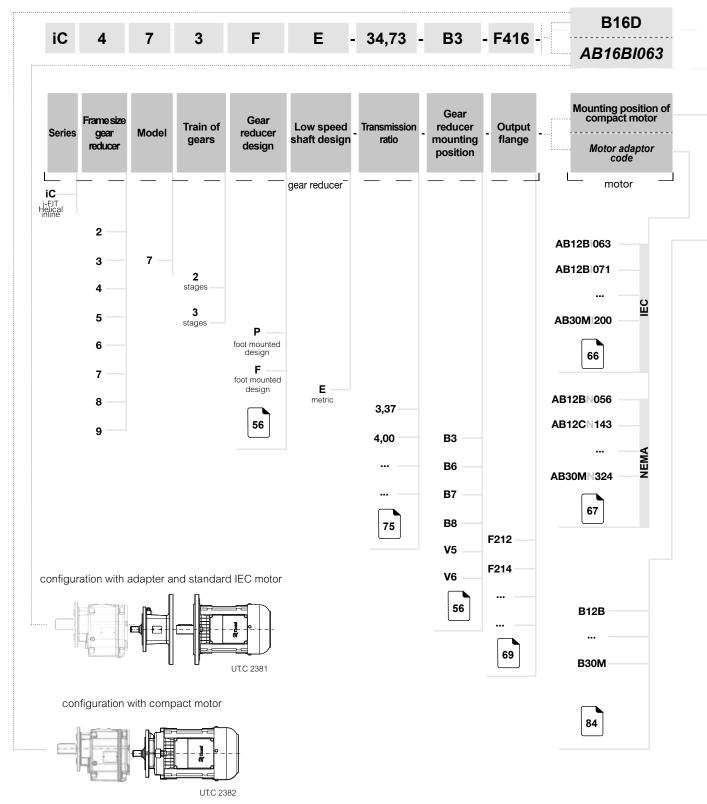
MR

3.3 - G series - Helical and bevel helical gear reducers and gearmotors

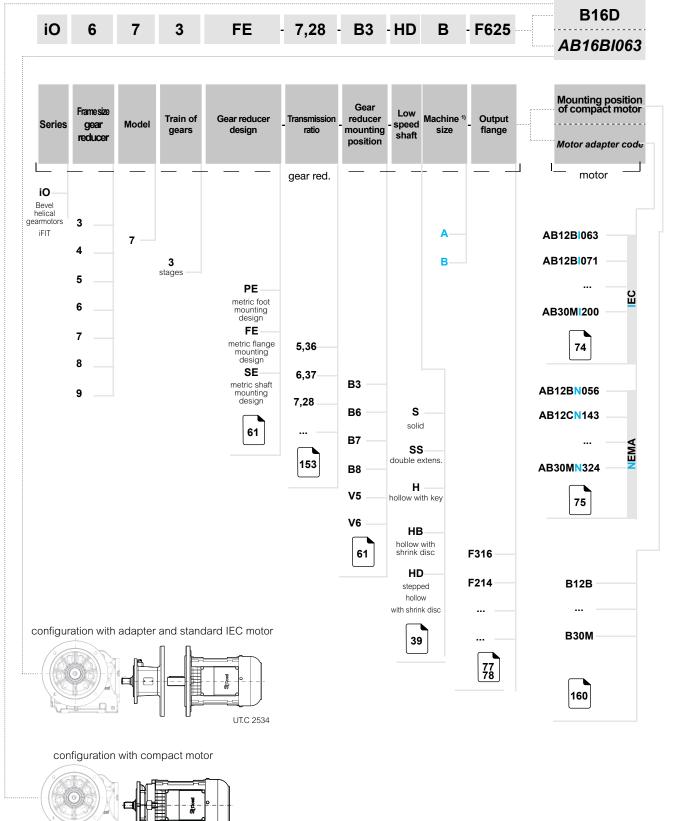

R 2I 320 U P 2 D - 10,3 B3 MR C2I 200 U 0 2 V - 48 × 350 - 35,3 V5 MOUNTING POSITION (see page 17) TRANSMISSION RATIO IEC MOTOR COUPLING DIMENSIONS $\emptyset d \times \emptyset P$ **DESIGN** Α standard others ... MODEL 2, 3 standard long SHAFT POSITION helical 0 bevel helical MOUNTING universal SIZE 40 ... 360 final reduction centre distance [mm] TRAIN OF GEARS Helical gear units: Bevel helical: CI 1 helical gear pair 1 bevel and 1 helical gear pairs 21 2 helical gear pairs ICI 1 helical, 1 bevel and 1 helical gear pairs 31 3 helical gear pairs C2I1 bevel and 2 helical gear pairs 41 C3I2 helical, 1 bevel and 1 helical gear pairs 4 helical gear pairs **MACHINE** gear reducer

motoriduttore

MR

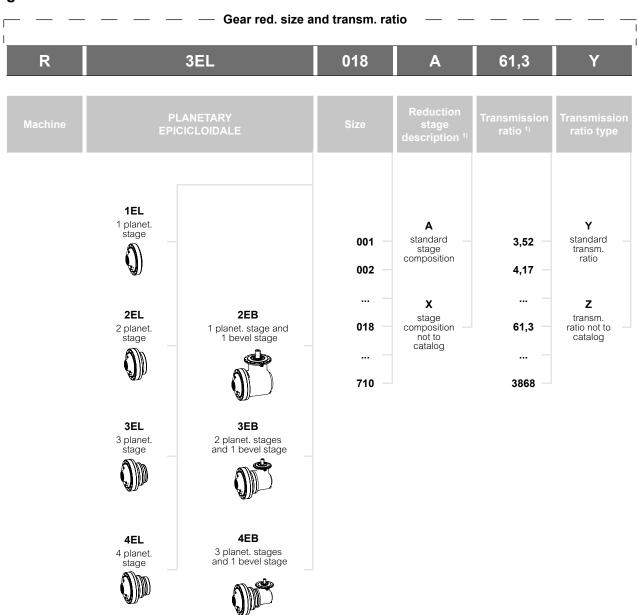

3.4 - H series - Helical and bevel helical gear reducers

3.5 - iFIT iC series - Helical inline gearmotors



3.6 iFIT iO series - Bevel helical gearmotors

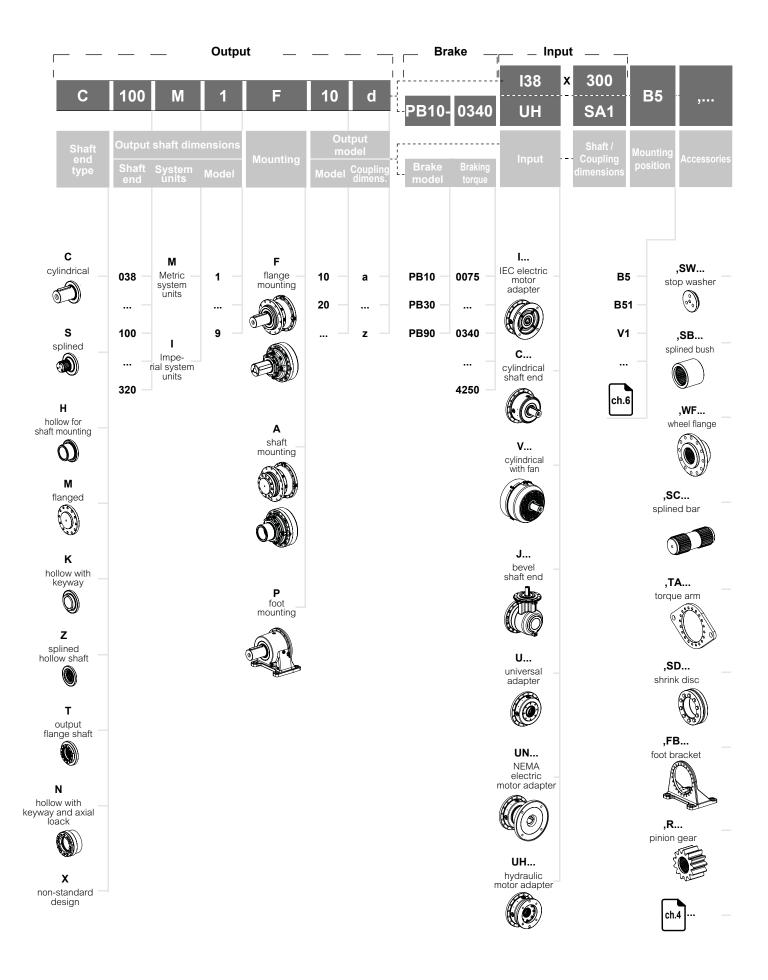
UT.C 2535


 $^{1)}$ field not to be filled in for "PE" and "SE" designs with "H" or "SS" shafts

blank page

3.7 - EP series - In-line and bevel gear reducers and gearmotors

Designation


Designation example:

R 2EL 002A 45,2Y C042M1 F10a C30×58 B5 ,... R 2EL 009A 25,9Y S070M1 P10c I55×400 B3 ,... R 3EB 030A 68,3Y H120M1 A10e J38×58 B53 ,...

1) More stage compositions and ratios are available on request. Use online selection software or consult Rossi S.p.A.

QWhen gearmotor is supplied with a Rossi standard motor, please state motor designation according to catalog TX. For terminal box position refer to ch. 6 of EP catalog.

4 - General product description

4.1 - General

Every gear reducer is provided with a name plate in anodised aluminium containing main technical information relevant to operating and constructive specifications and defining, according to contractual agreements (see fig. ,below), the application limits; the name plate must not be removed and must be kept integral and readable. All name plate data must be specified on eventual spare part orders.

Attention! For the mass stated on name plate remind that:

- it does not consider the lubricant mass;
- it is the maximum one for the gear reducer size, therefore the actual one can be lower as it depends from train of gears and transmission ratio;
- for the gearmotors the mass is always the same of **gearmotor without motor**, therefore consider also the mass of motor stated on relevant name plate in order to know the total mass.

In view of above mentioned points, if it is necessary to know the exact mass, consult Rossi.

Gear reducers and gearmotors are mechanical devices including one or more gear pairs (with internal or external toothing) with several space positions (parallel, intersecting, orthogonal axis), with the aim to reduce motion and to increase torque of a rotating driving machine (e.g. electric, hydraulic motor, etc.) to drive a great number of machines (lifting, traverse movements, rotations, etc.).

They are made of a cast iron or stainless steel housing, including shafts equipped with toothed gear wheels and supported by taper roller bearings; the gear pairs and bearings are grease or oil lubricated with different lubrication solutions: bath, splash or ducts lubrication; gear reducers and gearmotors are equipped with at least one input (high speed) shaft and one output (low speed) shaft; the lubricant is kept inside the hoousing through elastomer-based sliding seals.

4.2- Materials

Gear reducer component	Material
Housing	Grey cast iron, nodular cast iron
Planet carrier	Cast iron, steel
Helical and bevel gear pairs	Case hardened steel
Worms	Case hardened steel
Worm gears	Nodular cast iron, bronze alloy
Internal toothing crowns	Case hardened or nitrided steel
Low speed shafts	Structural steel, tempered steel
Cooling coils	Copper, stainless steel
Seal rings	Steel with elastomers

4.3 - Nominal data

Low speed shaft rated torque $M_{\rm N2}$ - Low speed shaft radial load $F_{\rm r2}$

	A Se	eries	E Se	ries	G S	eries	H Series		
Size gear	V, IV	, 2IV	21,	31	I, 2I, 3I, 4I, C	CI, ICI, C2I, C3I	21, 31, 41, CI	, C2I, C3I	
reducer	reducer M_{N2} [N m] F_{r2} [N] M_{N2} [N m] F_{r2} [N] M_{N2}		M _{N2} [N m]	$F_{r2}[N]$	M _{N2} [N m]	F _{r2} [N]			
32	40	1 800	37,5	1 250	-	-	-	-	
40	71	2 500	75	2 000	100	2 240	-	-	
41	_	-	95	2 500	_	_	-	-	
50	128	3 550	160	3 550	206	3 150	_	-	
51	_	-	224	4 250	_	_	_	-	
63	219	5 300	335	5 300	387	5 000	_	-	
64	261	5 300	450	6 700	487	5 000	_	-	
80	422	8 000	670	8 000	825	8 000	_	-	
81	500	8 000	900	10 000	975	8 000	_	_	
100	830	12 500	1 320	12 500	1 700	12 500	-	_	
101	-	-	1 800	16 000	- 0.450	-	_	-	
125	1 330	18 000	2 650	20 000	3 450	20 000	_	_	
126	1 580	18 000	3 550	25 000	-	-	_	-	
140			5 000 7 100	31 500	5 150	28 000	_	-	
160		2 450 26 500		40 000	7 750	35 500	_	_	
161	2 910	30 000	_	_	-	-	_	-	
180 200	4 620	- 45 000	10 000	- 50 000	10 900 15 500	45 000 56 000	_	_	
	4 020	43 000	10 000	30 000	l l		_	_	
225 250	8 020	63 000	_	_	21 800 31 500	71 000 90 000	_	-	
280	-	-	_	_	43 700	112 000	_	_	
320	_	_			54 500	140 000	_	_	
321	_	_			69 000 140 000		_	_	
360	_	_			87 500 180 000		_	_	
400	_	_			90 000	200 000	_	_	
401	_	_	_	_	103 000	200 000	_	_	
4000	_	_	-	_	_	_	109 000	200 000	
4001	_	_	_	_	_	_	122 000	200 000	
4500	_	_	-	_	_	_	140 000	250 000	
4501	_	-	-	_	_	_	160 000	250 000	
5000	-	_	_	_	_	_	206 000	315 000	
5001	-	-	_	_	_	_	250 000	315 000	
5600	-	_	_	_	-	_	280 000	400 000	
5601	-	-	_	_	_	_	315 000	400 000	
6300	-	-	_	_	_	_	400 000	400 000	
6301	-	_	_	_	_	_	450 000	400 000	
7101	-	_	_	_	_	_	710 000	630 000	
8001	_	_	_	_	_	_	1 000 000	900 000	

iC Series		iC 27	iC 37	iC 47	iC 57	iC 67	iC 77	iC 87	iC 97
Maximum nominal torque [[N m]	145	224	335	500	670	925	1750	3350
Maximum nominal radial load	[N]	4230	4940	5420	7100	6980	9900	16900	19800

iO Series	iO 373	iO 473	iO 573	iO 673	iO 773	iO 873	iO 973	
Maximum nominal torque [I	N m]	224	450	670	925	1750	3000	4870
Maximum nominal radial load	[N]	5640	5920	7630	12300	16100	27300	40000

UTD.123.2024-05.00_EN

Nominal data and performance of EP series:

Size

Train of gears - Coaxial

 $\mathbf{\textit{M}}_{N2}$ [N m], $\mathbf{\textit{M}}_{2max}$ [N m] F_{r2}^{-1} [N] (C ...), F_{r2}^{-1} [N] (S ...)

 ${\it i}_{\rm N}$

F_{r2}^{-1} [N] (C), F_{r2}^{-1} [N] (\$\frac{1}{2}\text{max} [\text{N}]	S)		i _N	
	1EL 3,55 7,1	2EL 12,5 50	3EL 50 250	4EL 180 3550
001A 1 600, 1 900 17 000, 20 000	4	411	4	4
002A 2 240, 2 650 20 000, 23 600	4	4	4	4
003A 3 150, 3 750 28 000, 33 500		4	4(10) -	q[]]
004A 4 500, 5 300 35 500, 40 000			4	4
006A 6 300, 7 500 42 500, 47 500	4		-d(-1)-	4
009A 9 000, 10 600 56 000 ,63 000	4		1	
012A 12 500, 15 000 71 000, 80 000	a			
015A 15 000, 18 000 63 000, 80 000	a			
018A 18 000, 21 200 85 000, 106 000				
021A 21 200, 28 000 85 000, 106 000				
030A 31 500, 45 000 100 000, 106 000				
042A 45 000, 67 000 132 000, 140 000				
060A 63 000, 90 000 140 000, 160 000				
085A 90 000, 140 000 200 000, 224 000				

¹⁾ Radial loads valid for cylindrical shaft end (C \dots) and splined shaft end (S \dots), respectively.

Size

Trai of gears - Bevel helical

 $m{M}_{N2}$ [N m], $m{M}_{2max}$ [N m] F_{r2}^{-1} [N] (C ...), F_{r2}^{-1} [N] (S ...)

 $i_{\rm N}$

	2EB 9 31,5	3EB 31,5 200	4EB 160 2240
001A 1 600, 1 900 17 000, 20 000	41	4	41
002A 2 240, 2 650 20 000, 23 600	4	THE PARTY NAMED IN	वार्
003A 3 150, 3 750 28 000, 33 500	4	4	
004A 4 500, 5 300 35 500, 40 000	41		
006A 6 300, 7 500 42 500, 47 500	41		
009A 9 000, 10 600 56 000 ,63 000			
012A 12 500, 15 000 71 000, 80 000	٦		
015A 15 000, 18 000 63 000, 80 000			
018A 18 000, 21 200 85 000, 106 000			
021A 21 200, 28 000 85 000, 106 000			
030A 31 500, 45 000 100 000, 106 000			
042A 45 000, 67 000 132 000, 140 000			
060A 63 000, 90 000 140 000, 160 000			
085A 90 000, 140 000 200 000, 224 000			

¹⁾ Radial loads valid for cylindrical shaft end (C \dots) and splined shaft end (S \dots), respectively.

Size

Train of gears - Coaxial

 $m{M}_{\rm N2}$ [N m], $m{M}_{\rm 2max}$ [N m] $F_{\rm r2}^{-1}$ [N] (C ...), $F_{\rm r2}^{-1}$ [N] (S ...)

 $i_{\rm N}$

2EL 3EL 4EL 18 ... 31,5 63 ... 250 250 ... 1 800 125A 125 000, 200 000 250 000, 280 000 180A 180 000, 280 000 355 000, 375 000 250A 265 000, 400 000 375 000, 425 000 355A 375 000, 560 000 530 000, 560 000 500A 530 000, 800 000 670 000, 710 000 710A **710 000, 1 120 000** 800 000 ,850 000

Size

Trai of gears - Bevel helical

 $m{M}_{N2}$ [N m], $m{M}_{2max}$ [N m] F_{r2}^{-1} [N] (C ...), F_{r2}^{-1} [N] (S ...)

 $i_{\rm N}$

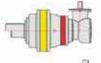
2	Ε	В
_	_	_

10 ... 25

3EB 45 ... 160 4EB

160 ... 1 250

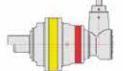
125A


125 000, 200 000 250 000, 280 000

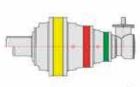
180A

180 000, 280 000 355 000, 375 000

250A

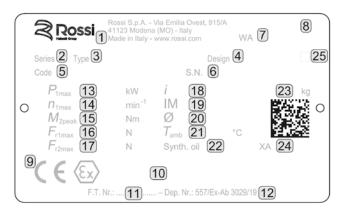

265 000, 400 000 375 000, 425 000

355A


375 000, 560 000 530 000, 560 000

500A

530 000, 800 000 670 000, 710 000


710A 710 000, 1 120 000

800 000, 850 000

4.4 - Nameplate

Every gear reducer is provided with a name plate in anodised aluminium containing main technical information relevant to operating and constructive specifications and defining, according to contractual agreements (see fig. ,below), the application limits; the name plate must not be removed and must be kept integral and readable. All name plate data must be specified on eventual spare part orders.

- **1** Mark, name and address of manufacturer
- 2 Gear reducer series
- **3** Gear reducer designation
- 4 ATEX design: 2G, 2D or 3G, 3D
- 5 Product code
- 6 Serial number
- 7 Production batch
- 8 Month and year of manufacturing
- 9 CE Markings: graphic symbol stating one or more EU Directives has/have been applied

10 ATEX mark:

EX: specific EU trademark specific for explosion protection

II: equipment group (suitable for installation in surface locations)

2G: equipment category (suitable for zone 1 and zone 2 - Gas)

2D: equipment category (suitable for zone 21 and zone 22 - Powders)

3G: equipment category (suitable for zone 2 - Gas)

3D: equipment category (suitable for zone 22 - Powders)

Ex: explosion protection

h: mode of protection applied to the non-electric construction intended to be used in an explosive atmosphere, through constructive safety

IIC: equipment suitable for installation in surface locations - gas group "C"; suitable for any combustible gas

IIIC: equipment suitable for installation in surface locations - "C" powder subgroup; suitable for any combustible dust

 $T^*:$ temperature class - maximum temperature that can be reached by the device: **T4, T3** (G); **T135 ° C**, **T200 ° C** (D)

Gb, **Db**, **Gc**, **Dc**: protection level category 2G, 2D, 3G, 3D, respectively

IP54: IP degree of protection

- 11 Technical file number deposited
- 12 Identification of the Certification Body where the technical file was filed

- 13 Maximum permissible power at the high speed shaft, with working and efficacious cooling systems, if any: the real power to be applied is to be determined basing on the service (overloads, running time, etc.).
- **14** Maximum permissible input speed
- **15** Maximum permissible torque at the low speed shaft as overload (duration < 15 s).
- Mximum radial load permissible at the center line of the high speed shaft taking into account the direction of rotation, the most unfavourable direction of the load and $n_{1\text{max}}$.
- 17 Maximum radial load permissible at the center line of the low speed shaft end taking into account the direction of rotation, the most unfavourable direction of the load and $n_{2\text{max}} (= n_{1\text{max}} / i)$
- **18** Transmission ratio
- Mounting position; the eventual indication «spec.» means that it concerns a gear reducer with plugs for special (inclined) mounting position.
- 20 Ø motor shaft Ø flange (gearmotor)
- 21 Admitted ambient temperature range
- 22 Lubricant type: PAG (polyglycole) size ≤ 81 and for A series (all sizes); PAO (polyalfaolephines) for all remaining cases.
- 23 Gear reducer or gearmotor mass (if applicable).
- 24 Progressive alphanumeric code identifying the presence of additional technical documentaiton (e.g.: SPT scheme)
- 25 If marked with X install the necessary probes and/or thermostats: mounting position as per SPT scheme attached to these ATEX operating instructions; connections see ch. 9

5 - How supplied

5.1 - Receipt

At receipt **verify** that the unit corresponds to the one ordered and **has not been damaged during the transport**, in case of damages, report them immediately to the courier.

Do not commission gear reducers and gearmotors that are even slightly damaged or not suitable for the intended use: in this case consult Rossi.

Report any non-compliance to Rossi

5.2 - Lubricant

For A, E, G series, if not otherwise stated, gear reducer sizes \leq 81 are supplied **complete** of synthetic lubricant (PAG base), whereas sizes \geq 100 are supplied **without** lubricant (see table 8.2).

For H series, if not otherwise stated, all gear reducer sizes are supplied without lubricant (see tab. 8.2).

For iC series, if not otherwise stated, all gear reducer sizes are supplied **complete** of synthetic lubricant (PAG base).

For EP series, if not otherwise stated, gear reducer sizes \leq 021A are supplied **complete** of synthetic lubricant (PAO base) whereas sizes \geq 022A are supplied **without** lubricant (see table 8.2). Every gear reducer is equipped with lubrication name plate.

5.3 - Painting

Gear reducers in ATEX design are externally protected with **electrically conductive enamel** with surface resistivity $< 10^8 \Omega$; **grey** color RAL 7040.

In order not to affect the protection coat of external paint, avoid damages to it both from a mechanical (ex. scratch), chemical (ex. aggressive acids) a thermal point of view (ex. sparks).

For typology, specifications, resistance to paint chemical agents, see Tab. 5.3.1.

Tab 5.3.1 - Painting.

		Internal painting	External	External painting			
Series	Size		Final color grey RAL 7040	Features			
A	32 81		Epoxy powder (prepainted)	Resistant to atmospheric and aggressive agents. (corrosivity class C3 according to ISO 12944-2)			
G	40 81	Epoxy powder (prepainted)	+ Water-soluble polyurethan dual-compound conductive enamel Total thickness 90 ÷ 120 μm	Suitable for further coats of dual-compound paints only¹) Machined parts are painted with water-soluble polyurethan dual-compound conductive enamel	Machined parts are painted with water-soluble polyurethan dual-compound conductive enamel		
A E	100 250 50 180		Single compound ester epoxy or phenolic resin	Resistant to atmospheric and aggressive agents. (corrosivity class C3	Thickness 50 ÷ 80 μm Remove by a scraper or solvent the eventual paint		
G	100 401	Single compound ester epoxy or	basis primer (pre-painted)	according to ISO 12944-2) Suitable for further coats	of gear reducer coupling surfaces		
Н	4000 8001	phenolic resin basis primer (pre- painted)	Water-soluble polyurethan dual-compound conductive enamel	of dual-compound paints only ¹⁾ Machined parts are			
iC, iO	272 972		Total thickness	painted with water-soluble polyurethan dual-			
	273 973		90 ÷ 120 μm	compound conductive enamel			
EP	001 710						

Before adding further coats of paint, properly protect the seal rings and carefully degrease and sand the gear reducer surfaces (as alternative to sandblasting it is possible to apply a water soluble primer coat). In the event of overcoating, use **only conductive paint with surface resistivity values** $< 10^8 \, \Omega$.

5.4 - Protections and packing

Overhanging free shaft ends and hollow shafts are treated with protective anti-rust long life oil and protected with a plastic (polyethyl ene) cap (for A, E, G series only up to D \leq 48 mm for overhanging shafts, D \leq 110 mm for hollow shafts). All internal parts are protected with protective anti-rust oil.

Unless otherwise agreed in the order, products are adequately packed as follows: on pallets, protected with a polyethylene film, wound with adhesive tape and strap (bigger sizes); in carton pallets, wound with adhesive tape and strap (smaller sizes); in carton boxes wound with tape (for small dimensions and quantities). If necessary, motors are conveniently separated by means of anti-shock foam cells or of filling cardboard.

Generally the packing is suitable for the normal road/rail transport. For sea transport it is necessary to foresee a special packing, when ordering.

Do not stock packed products on top of each other.

6 - Lifting, handling and storage

6.1 - Lifting and handling

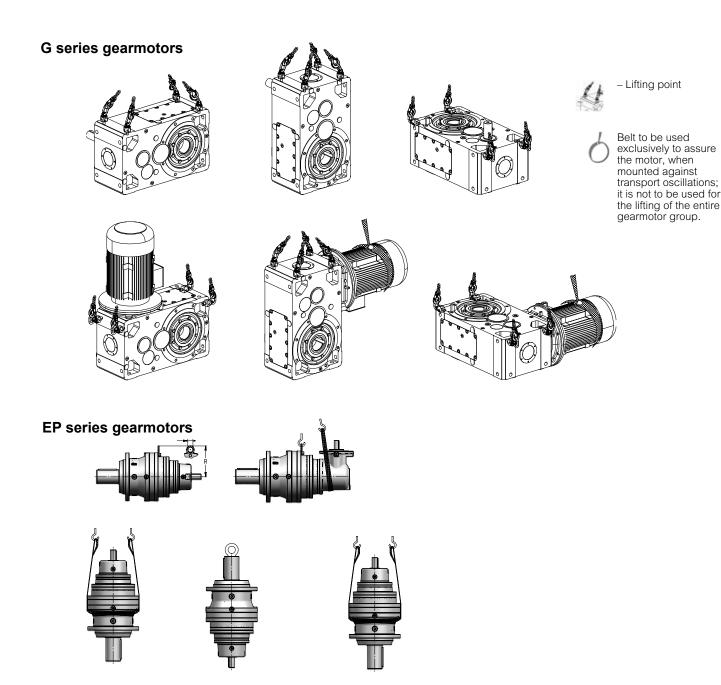
Make sure that the lifting equipment (e.g.: crane, hook, eye bolt, straps, etc.) is suitable for the dimensions and total weight of gear reducer or gearmotor (gear reducer, motor, oil, etc.); refer to Rossi technical catalog,

For the lifting and handling of gear reducer (or gearmotor) use exclusively clearance or threaded holes present in the gear reducer housing feet, as purely shown in the figures below.

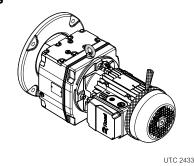
Avoid unbalanced liftings during the handling (max inclination ±15° compared with mounting position during the transport) and, if necessary, use addition belts in order to balance the load.

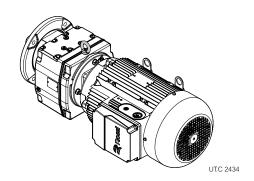
Do not use shaft ends.

Do not use motor eyebolts, if any.

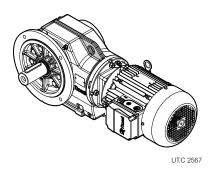

Do not use front threads of shaft ends or any external pipes.

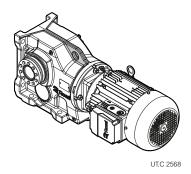
Do not add supplementary loads to the gear reducer or gearmotor mass.

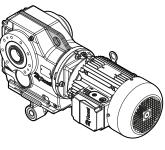



Attention! During the lifting and handling:

- do not stand under the suspended loads;
- do not damage the gear reducer with an inadequate transport;
- keep the gear reducer filled with oil in the mounting position foreseen in the order.




iC gearmotors



iO gearmotors

LITC 2569

6.2 - Storing

The ambient must be sufficiently clean, dry (relative humidity < 50%), free from excessive vibrations (v_{eff} < 0,2 mm/s) to avoid damage to bearings (excessive vibrations should als guarded during transmt, even if within wider range) and at a temperature of 0 ÷ +40 °C: peaks of 10 °C above and below are acceptable.

The gear reducers filled with oil must be positioned according to the mounting position stated on order and on name plate during storage.

Every six months rotate the shafts (some revolutions are sufficient) to prevent damage to bearings and seal rings.

Assuming normal surroundings and the provision of adequate protection during transit, the unit is protected for storage up to 1 year.

For a 2 year storing period in normal environment or up to 1 year in environment with high humidity and temperature and/or environment with high changes in temperature it is necessary to pay attention also to following instructions:

- generously grease the seal rings, the shafts and the unpainted machined surfaces, if any, and periodically check the conservation state of the protective anti-rust oil;
- for gear reducers and gearmotors supplied without oil: completely fill the gear reducers with lubrication oil and verify the specified level before commissioning.

For storages longer than 2 years or in aggressive surroundings or outdoors, consult Rossi.

7 - Installation

7.1 - Maintenance and cleaning

General safety precautions

Maintenance on gear reducers and gearmotors series A, E, G, H, iFIT, EP, must be performed only by expert personnel, whose training has included all the necessary instructions on the equipment protection methods, on the installation methods, on the relevant laws and regulations and on the general principles of classification of places with danger of explosions (see IEC/EN 60079-17 "Explosive atmospheres - Part 17: verification and maintenance of electrical installations" - Annex B: "knowledge, skills and competences of the responsible personnel, technical personnel with executive functions and operating personnel").

Troubleshooting, diagnosis and repairs

The repair of gear reducers and gearmotors of A, E, G, H, iFIT, EP series must be executed by skilled personnel only (see IEC/EN 60079-19 "Explosive atmospheres - Part 19: repair, revision and restoration of equipment" - Annex B "knowledge, skills and competences of responsible and operational personnel").

7.2 - General

Before the installation, **verify that**:

- there is no potential explosive atmosphere all around;
- the category of the machine is suitable to the area where it will be used and the design is suitable to the environmental conditions (temperature, atmosphere, etc.); for gearmotors it is necessary to do verification both regarding gear reducer and motor on the basis of the data of the respective name plates because their limits of application may be different. Attention! Nameplate data refer to gear reducer only; when it is assembled together with a motor, the application limits derive from the combination of the two nameplates considering the most restrictive ones;
- Basing on the name plate data and additional literature, if any, the size of the unit has been chosen **to meet the requirements of the application**, that is service factor fs = PN1/P1 is greater than or equal to fs requested determined basing on instructions given in par. 7.15.
- in each case, **fs is always** \geq 1 (\geq 0,85 for worm gear reducers and gearmotors series A);
- input power P₁ is to be lower than thermal power determined basing on instructions given in par. 7.16;
 for further instructions consult Rossi;
- Verify the radial and axial loads are to be according to the max admissible value stated in our technical catalogues. In doubtful cases consult Rossi;
- There were no damages during transport or storage.
- The motor shaft has not been displaced axially in such a way as to result in the fan blades touching the fan cover or shield causing possible damage to one or more bearings.
- Gear reducers supplied complete with oil contain the correct quantity of oil for the mounting position specified on the nameplate (see ch. 15 ... 19); and there is a filler plug with filter and valve (see ch. 13.6);

- Unpainted surfaces not used for assembly are protected with paint suitable for the installation; the paint should be conductive);
- − the structure on which gear reducer or gearmotor is fitted is plane, levelled and sufficiently dimensioned in order to assure fitting stability and vibration absence, (vibration speed $v_{\text{eff}} \le 3.5$ mm/s for $P_1 \le 15$ kW and $v_{\text{eff}} \le 4.5$ mm/s for $P_1 > 15$ kW are acceptable), keeping in mind all transmitted forces due to the masses, to the torque, to the radial and axial loads.
- Used mounting position corresponds to the one stated on name plate;
- Electrical connection (power supply, etc.) corresponds to motor name plate data.

The **probes** (e.g.: Pt 100) and the **thermostats**, when foreseen, **are separately supplied** and therefore it **is necessary to install them on the gear reducer**, in the position stated in the **SPT scheme** attached to present ATEX Operating Instructions and following the instructions in par. 11.2, 11.3, 11.4, 11.5, 11.6.

Connect to proper checking device such probes: see SPT scheme and ch. 11.2, 11.3, 11.4, 11.5, 11.6.

Connect the eventual coil (or internal heat exchanger) to the external water circuit.

For equipments suitable for speed variation, utilise a control system (e.g. encoder connected to a safety system) in order not to exceed the maximum input speed stated on nameplate.

The gear reducer or gearmotor can be installed only if in the environment there is no potentially explosive atmosphere during the installation.

When a motor is assembled to a gear reducer or gearmotor without motor verify that it satisfies the minimum safety requirements according to ATEX 2014/34/EC (see table 7.1) and that the relevant application limits (n_{1max} , P_{1max} , etc.) stated on the nameplate of gear reducer (or of gearmotor without motor).

Install the unit in such a way that the level plug is accessible for inspection (where applicable).

UTD.123.2024-05.00_EN

Attention! Bearing life and good shaft and coupling running depend on alignment precision between the shafts.

Carefully align the gear reducer with the motor and the driven machine (with the aid of shims if need be; for gear reducer size > 400 use level tapped holes), interposing adequate couplings if need be.

Tab. 7.1 - Requisiti minimi di sicurezza per motore /	ATEX
---	------

Zona	Motore ¹⁾	Sonde termiche	T _{superficiale}
1 (G)	🐼 II 2G Ex e, Ex d, Ex de	Termistori	Da definire in
21 (D)		o Pt100	base alle
2 (G)	🐼 II 3G Ex n		caratteristiche
22 (D)	(II 2D IP55 (II 2D IP65 per polveri conduttrici)	_	della zona d'impiego

¹⁾ Gli apparecchi idonei per zona 1 lo sono anche per zona 2; analogamente quelli idonei per zona 21 lo sono anche per zona 22.

Incorrect alignment may cause breakdown of shafts and/or bearings (which may cause overheatings) which may represent heavy danger for people.

Position the gear reducer or gearmotor so as to allow a free passage of air for cooling both gear reducer and motor (especially at the fan side of gear reducer and motor).

Avoid any obstruction to the air flow; heat sources near the gear reducer that might affect the temperature of cooling air and of gear reducer (for radiation); insufficient air recycle and applications hindering the steady dissipation of heat. Do not intake heated air.

Mount the gear reducer so as not to receive vibrations.

Mating surfaces (of gear reducer and machine) must be clean and sufficiently rough to provide a good friction coefficient (aproximately Ra $3.2 \div 6.3 \mu m$): remove by a scraper or solvent the eventual paint of gear reducer coupling surfaces. When external loads are present use pins or locking blocks, if necessary.

For the dimensions of fixing bolts of gear reducer feet and flanges and the depth of tapped holes consult the Rossi technical catalogs: for bolt tightening torques see ch. 7.4.

When fitting gear reducer and machine and/or gear reducer and eventual flange **B5** it is recommended to use locking adhesives such on the fastening screws (also on flange mating surfaces).

The bonding connection of gear reducer and eventually his base, must be carried out through one of the free casing holes:

- remove paint from mating surface;

 use conductors of adequate section according to the regulations in force, see table 3 of EN 50014 standard, considering as traverse section area of phase conductors of the installation the one of the motor power supply cables.

- point out the place used for the earth connection with adequate symbols.

Mating surfaces of connections must be clean and protected against corrosion and conductors must not be subjected to mechanical stresses.

The installer must make the connection on the cable using an eyelet that will then be fixed to the structure by means of a screw; a serrated steel washer as an anti-rotation device will be interposed between the terminal and the housing, while an elastic steel washer as an anti-loosening device will be interposed between the head and the terminal. The eyelet terminal must be suitable to accept a cable section referred to the table below.

Tab. 7.2

Section area of phase conductors, S	Min section area of relevant PE, Sp conductor
mm²	mm²
S ≤ 16	S
16 < S ≤ 35	16
S > 35	0,5 S

7.3 - Initial inspection by qualified personnel

Before commissioning, the equipment must be subjected to the initial detailed inspection to ensure that the chosen protection and installation methods are suitable.

In this regard, see the standard IEC / EN 60079-17 "Explosive atmospheres - Part 17: verification and maintenance of electrical installations", in particular Annex B "knowledge, skills and competences of the responsible personnel, technical personnel with executive functions and operating staff".

Before wiring-up the gearmotor make sure that motor voltage corresponds to input voltage. If direction of rotation is not as desired, invert two phases at the terminals of three phase asynchronous motor.

Y-Δ starting should be adopted for no-load starting (or with a very small load) and for controlled starts, low starting current and limited stresses, if requested.

If overloads are imposed for long periods or if shocks or danger of jamming are envisaged, then motorprotection, electronic torque limiters, fluid couplings, safety couplings, control units or other similar devices should be fitted.

Usually protect the motor with a thermal cut-out however, where duty cycles involve a high number of onload starts, it is necessary to use thermal probes for motor protection (fitted on the wiring); magnetothermic breaker is unsuitable since its threshold must be set higher than the motor nominal current of rating.

Connect thermal probes, if any, to auxiliary safety circuits.

Use varistors and/or RC filters to limit voltage peaks due to contactors. Fuses do not prevent from voltage peaks.

With non-electric motors (i.e. hydraulic motors) install torque limiters (i.e. max pressure valves) and do not exceed n1 = 1500 min-1.

Verify that the above mentioned accessories comply with application zone.

When gear reducer is equipped with a backstop device - whose presence is given by an arrow near the low speed shaft stating the free rotation direction - provide a protection system where a backstop device breaking could cause personal injury or property damage.

In polluting surroundings, take suitable precautions against lubricant contamination through seal rings or other.

If the reducer or gearmotor is repainted, use conductive paint with surface resistivity values < 10° Ω.

Gear reducers and gearmotors should be protected by appropriate means from solar radiance and extremes of weather.

If it is necessary to run the gear reducer or gearmotor with 'free' shafts, securely fasten the key in the keyway. For ambient temperature greater than +40 °C or less than 0 °C, consult Rossi.

UTD.123.2024-05.00_EN

7.4 - Tightening torques for fastening screws (feet, flange, accessories) and plugs

Unless otherwise specified, it is normally sufficient to adopt screws in strength class 8.8; exceptions are the cases listed below, for which it is necessary to adopt screws with strength class 10.9:

- iC 372 iC 373 FE with flange F312 and flange F314
- iC 472 iC 473 FE with flange F414
- iC 572 iC 573 FE with flange F516
- Before tightening the bolt be sure that the eventual centering of flanges are inserted properly- Before tightening the bolt be sure that the eventual centering of flanges are inserted properly
- The bolts are to be diagonally tightened with the maximum tightening torque.

Thoroughly degrease the screws before tightening. Especially under severe vibration, heavy-duty service, and/or frequent reversals of motion, it is always advisable to **use locking adhesives** (such as Loxeal 23-18 or equivalent) in the fastening screws and bonding planes.

Pay attention to 12.9 bolts tightening. Values higher than recommended values can damage the bolts. Do not use lubricants altering the friction coefficient for they may overload the screw connection. Always verify the tightening torque after the first hours of running.

A, E, G, H, iFIT series

Tab. 7.4.1 - Tightening torque for foot and flange fixing screws

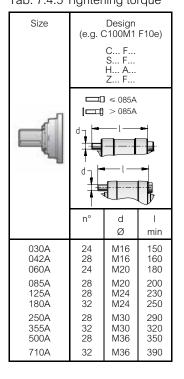
	3 1							
		<i>M</i> _s [N m	n]					
Worm	ί	JNI 5737-88, UN	N 5931-84					
	cl. 8.8	cl 10.9	cl. 12.9					
M4	2,9	4	-					
M5	6	8,5	10					
M6	11	15	20					
M8	25	35	40					
M10	50	70	85					
M12	85	120	145					
M14	135	190	230					
M16	205	290	350					
M18	280	400	480					
M20	400	560	680					
M22	550	770	930					
M24	710	1 000	1 200					
M27	1 000	1 400	1 700					
M30	1 380	1 950	2 350					
M33	2 000	2 800	3 400					
M36	2 500	3 550	4 200					
M39	2 950	4 200	5 000					
M42	4 100	5 800	6 900					
M45	5 000	7 100	8 400					
M48	6 100	8 600	10 300					
M56	9 800	13 800	16 500					

Tab. 7.4.3 - Tightening torque for accessories (probes and sensors)

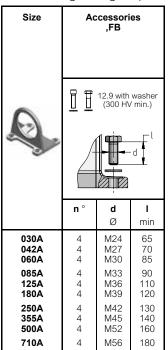
Thread	M s [N m]
1/2 NPT	50

Tab. 7.4.2 - Tightening torque for plugs

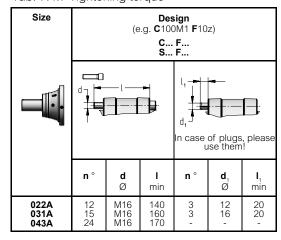
Size gear reducer	Thread size	<i>M</i> _s [N m]
40, 50	G 1/4"	7
63 81	M16 × 1.5	14
100 140	G 1/2"	14
160 280	G 3/4"	14
320 360	G 1"	25
400, 401	G 1"	25
4001 6301	G 1"	25
7101	G 1"1/4	25
8001	G 1"1/2	25


Size gear reducer iC, iO	Thread size	M _s [N m]		
272 / 273				
372 / 373		8		
472 / 473	M10 x 1			
572 / 573				
672 / 673				
772 / 773	M12 x 1.5	14		
872 / 873	WITZ X 1.5	14		
972 / 973	M22 x 1.5	45		

Size 001A ... 021A


Tab. 7.4.3 - Tightening torque for fastening bolts, feet and flanges

Size	I	Design (COOMALTIC)													
	(e.g. C038M1 F ² C F S F H A M A							F10a) K F Z F				C P S P			
4													Ţĺ Į		
	n°	d Ø	min	l max	n°	d Ø	min	l max	n°	d Ø	min	l max	n°	d Ø	l min
001A, 002A 003A 004A, 006A	8 10 10	M10 M12 M12	30 35 40	40 35 50	- 10 10	- M12 M12	- 35 35	- 35 35	8 - -	M10 - -	10 - -	13 - -	4 4 4	M14 M16 M16	40 45 45
009A, 012A 015A 018A, 021A	12 16 12	M14 M14 M16	45 45 55	55 55 75	12 16 12	M14 M14 M16	45 45 50	50 50 50	- - -	- - -	- - -	- - -	4 4 4	M20 M20 M22	55 55 60


Size 030A ... 710A Tab. 7.4.5 Tightening torque

Size 030A ... 710A Tab. 7.4.6 Tightening torque

Size 022A, 031A, 043A Tab. 7.4.7 Tightening torque

Tab. 7.4.7 - Tightening torque for fastening bolts

	R				s			Н				
			d									
size	output design	n	d	l min	output design	n	d	l min	output design	n	d	I min
007	R30b	12	M12	50	S30b	16	M10	100	H30b	10	M16	60
015	R30c	10	M16	60	S30c	16	M12	130	H30c	12	M16	55
021	R30d	24	M16	65	S30d	16	M14	140	H30d	12	M20	70
030	R30e	24	M16	65	S30e	24	M16	160	H30e	24	M20	80
042	R30f	24	M20	70	S30f	28	M16	180	H30f	24	M20	70
060	R30g	24	M20	80	S30g	24	M20	220	H30g	24	M20	80
085	R30h	24	M20	80	S30h	28	M20	240	H30h	24	M30	110
125	R30i	24	M24	90	S30i	28	M24	240	H30i	28	M24	90
180	R30j	28	M24	90	S30j	32	M24	260	H30j	32	M24	90
250	R30k	28	M30	110	S30k	28	M30	300	H30k	28	M30	110

Tab. 7.4.8 -Size **001A ... 021A**

Size	Performance (e.g. M A) Accessories (e.g. ,WF)				
	n°	d 10.9	I min		
001A 002A 003A 006A 009A 015A 018A 021A	12 12 12 12	M10 M12* M18 M20	30 40 50 60		

*) Class 12.9.

Tab. 7.4.9 -Size **030A ... 710A**

Size	Accessories (e.g. ,WF ,WT)					
	n°	d 10.9	I min			
030A	12	M24	70			
042A	16	M24	70			
060A	12	M30	90			
085A	16	M30	90			
125A	18	M30	100			
180A	28	M30	100			
250A	36	M30	110			
355A	44	M30	110			
500A	44	M33	130			
710A	48	M36	140			

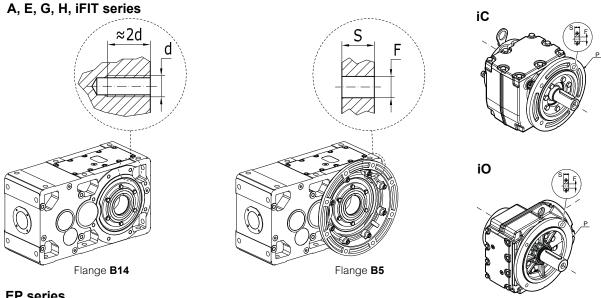
Tab. 7.4.10 - Tightening torque [N m]

	Class						
	8.8	10.9	12.9				
Ø	$M_2 < 70\% M_{n2}$		Washer must be always used (300 HV min.)				
M10	50	70	85				
M12	85	120	145				
M14	135	190	230				
M16	210	300	355				
M20	400	560	675				
M22	530	770	895				
M24	690	1 000	1 165				
M27	1 010	1 400	1 705				
M30	1 380	1 950	2 330				
M33	2 000	2 800	3 375				
M36	2 500	3 550	4 220				
M39	2 950	4 200	4 980				
M42	4 100	5 800	6 920				
M45	5 000	7 100	8 440				
M52	7 600	10 700	12 800				
M56	9 800	13 800	16 540				

EP plugs

For the size of plugs and breather plug and the value of tightening torque see table below.

Table 7.4.11 Tightening torque


		Filler plu	gs		Plug with breather		
	ø	Ch	Tightening torque [Nm]		ø	Ch	Tightening torque (with aluminium washer) [Nm]
ø	G 1/8 " G 1/4" G 3/8 "	5 6 8	8 13 20	ø	G 1/4 " G 3/8 " G 1/2 "	17 20 24	12 16 23
्रा	G 1/2 " G 3/4" G 1"	10 12 17	30 45 65	Ð 5	G 3/4 " G 1" G 1" 1/4	32 40 50	37 58 105
	G 1" 1/4 G 1" 1/2	22 24	100 125		G 1" 1/2	55	126

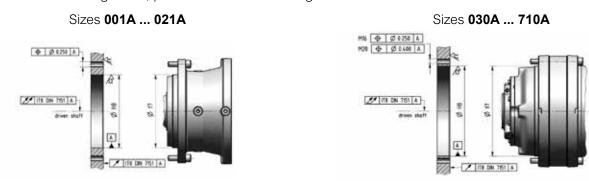
7.5 - Flange mounting

Carefully select the length of fixing screws when using tapped holes (B14) for gear reducer fitting, in order to assure a sufficient meshing thread length (minimum length 1,5 · D screw), for the correct gear reducer fitting to the machine without breaking down the threading seat.

Locking adhesives are recommended both around threads and on mating surfaces.

For the dimensions of fixing screws and the depth of tapped holes consult Rossi technical catalogs.

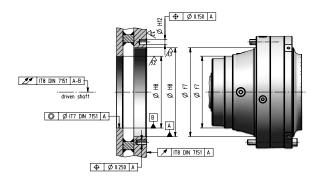
EP series


For splined couplings apply adequate lubricants.

To machine the driven shaft, please refer to the dimensions shown in ch. 4, catalog EP series. Before mounting pay attention to clean carefully mating surfaces.

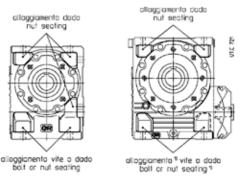
In presence of external radial loads or torque required $M_2 \ge 0.7 \times M_{N2}$, apply locking adhesives.

Tighten the screws according to the values given in the table on previous page.


To machine the matching frame, please refer to the drawings below.

Sizes 022A, 031A, 043A

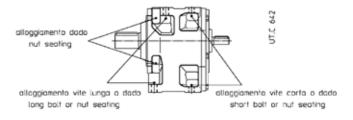
These gear reducer sizes have two spigots. If the output shaft is not subject to radial load or if radial load is below 60% maximum allowed, only the bigger spigot may be used.


If elastic pins are present on the gear reducer flange, they must be used in the matching with a machine frame by a length equivalent to their diameter.

UTD.123.2024-05.00_EN Rossi 35

7.6 - Foot mounting

A series

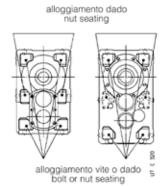


 For the fastening of fan side screws (sizes 100 ... 250) disassemble the fan cover (which has to cover the seating for the best air flow) and therefore any walls must distance from this one at least half gear reducer center line.

Tab. 7.6.1

Gear red.	Worm
size	UNI 5737-88 × I _{max}
32	M6 × 25
40	M8 × 35
50	M8 × 40
63, 64	M10 × 50
80, 81	M12 × 60
100	M14 × 55
125, 126	M16 × 65
160, 161	M20 × 80
200	M24 × 90
250	M30 × 120

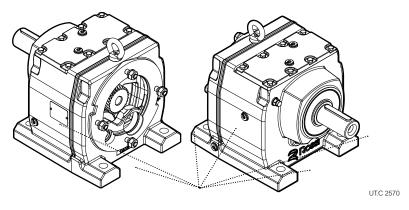
E series



Tab. 7.6.2

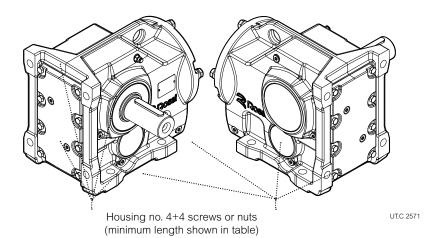
Gear red.	Short bolt	Long bolt			
size	UNI 5737-88 × I _{max}				
50, 51	M10 × 30	M10 × 35			
63, 64	M12 × 35	M12 × 40			
80, 81	M14 × 40	M14 × 50			
100, 101	M16 × 50	M16 × 60			
125, 126, 140	M20 × 60	M20 × 70			
160, 180	M24 × 70	M24 × 90			

G series



Tab. 7.6.3

Gear red.	Worm
size	UNI 5737-88 × I _{max}
40	M6 × 22
50	M8 × 30
63, 64	M10 × 35
80, 81	M12 × 40
100	M14 × 50
125, 140	M16 × 55
160, 180	M20 × 70
200, 225	M24 × 90
250, 280	M30 × 110
320 360	M36 × 130
400, 401	M45 × 260

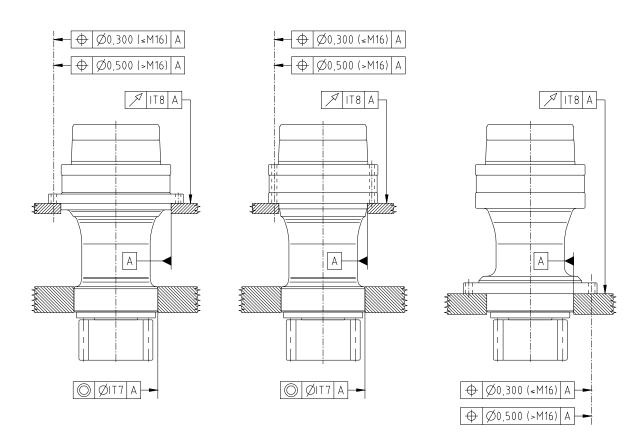

Tab. 7.6.4 Foot mounting screw dimensions - iC

Housing no. 4 screws or nuts (minimum length shown in table)

Size gear reducer iC	Foot fastening screw UNI5737 - ISO 4014 (minimum length in mm)
27 37	M8 x 40
47 57 67	M12 x 50
77	M16 x 60
87	M16 x 80
97	M20 x 100


iO

Tab. 7.6.5 Foot mounting screw dimensions - iO


Size gear reducer iO	Foot fastening screw UNI5737 - ISO 4014 (minimum length in mm)
373 473	M10 x 40
573 673	M12 x 50
773	M16 x 60
873	M20 x 75
973	M24 x 85

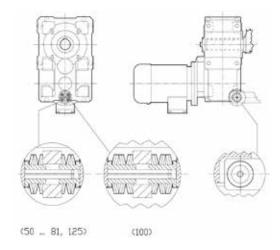
EP series

Gear reducer mounting for slewing drives

In the case of slewing drives (output design R-S-H), to ensure a correct operation and an excellent power transmission between gear reducer and machine, the gear reducer requires a rigid connection structure resistent to radial loads. The shape and position tolerances stated below must be followed.

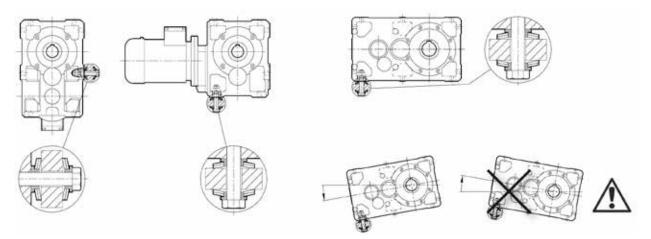
7.7 - Shaft mounting

Important! When shaft mounted, the gear reducer must be supported both axially and radially (also for mounting positions B3 ... B8 in the case of A, E, G, H, iFIT series and mounting positions B5 and B53 for EP) by the machine shaft end, as well as anchored against rotation only, by means of a reaction **having freedom of axial movement** and sufficient **clearance in its couplings** to permit minor oscillations always in evidence without provoking dangerous overloading on the gear reducer. Lubricate with proper products the hinges and the parts subject to sliding; when mounting the screws it is recommended to apply **locking adhesives**.

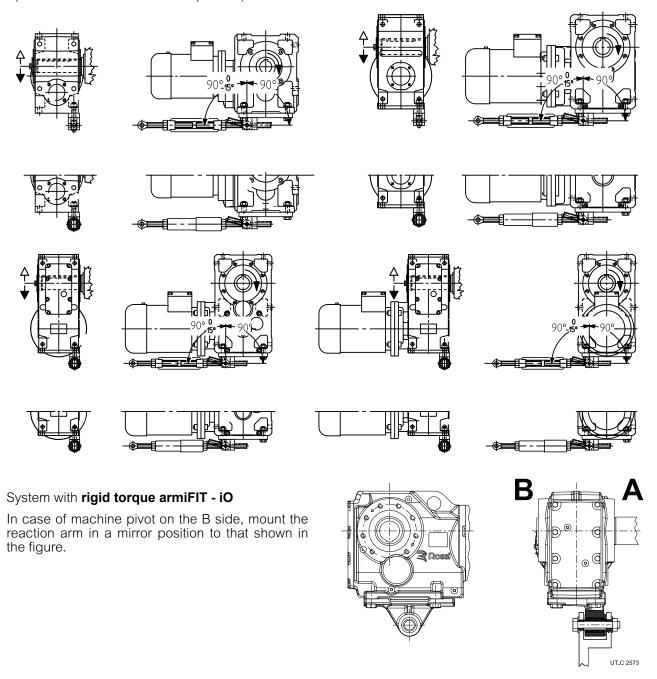

Important! Concerning the reaction system, follow the project indications stated in the technical catalogs Rossi. Whenever personal injury or property damage, due to falling or projecting parts of gear reducer or of its parts, may occur, foresee **adequate supplementary protection devices against**:

- rotation or unthreading of the gear reducer from shaft end of driven machine following to accidental breakage of the reaction arrangement;
- accidental breakage of shaft end of driven machine.

Attention! For vertical ceiling-type mounting and only for gear reducers equipped with locking rings or bushing, gear reducer support is due only to friction, for this reason it is advisable to provide it with a fastening system.

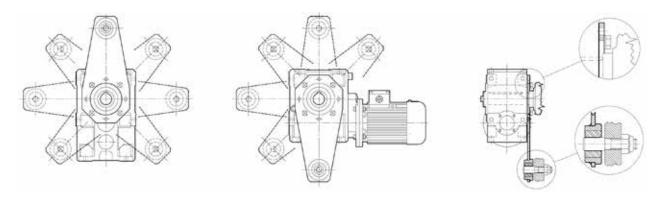

Kit using reaction disc springs (reaction recess), size < 125 helical.

For the kit mounting, use the tapped butt end hole on the shaft end of the driven machine and the flat machined chamfered surface for compressing and fitting the disc springs into the reaction recess.

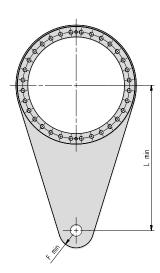

System with reaction bolt using disc spring

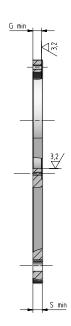
For helical and bevel helical gear reducers sizes 140 ... 360 C2I, 2I, 3I, mounting position B3 or B8, ensure that the **housing oscillation**, **during the running**, **does not overtake** – towards the top – **the horizontal position**.

System with rigid or flexible torque arm


If the direction of rotation is opposite to that given in the fig. rotate the rigid torque arm by 180° (unnecessary operation in case of flexible torque arm).

System with **torque arm** (A, E, G, H series)

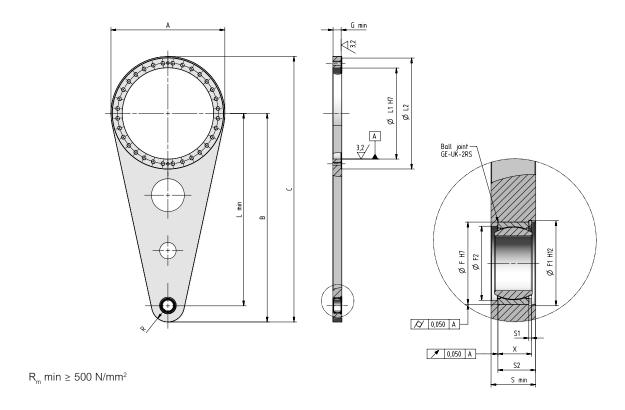

According to dimensions, some mounting positions of the motor flange torque arm could not be possible.


Before mounting the reaction arm, clean carefully the coupling surfaces and apply locking adhesives on the screws and on mating surfaces. Tighten the screws by a dynamometric wrench at values shown in the table 7.4.10.

System with asymmetrical torque arm without ball bearing (EP series, sizes 001-021)

The torque arm can be easily applied to all \mathbf{H} , \mathbf{M} and \mathbf{N} designs. Symmetrical torque arm is provided as standard option (,TA - up to size 085A); if you need a one sided torque arm, it must comply with the dimensions shown below.

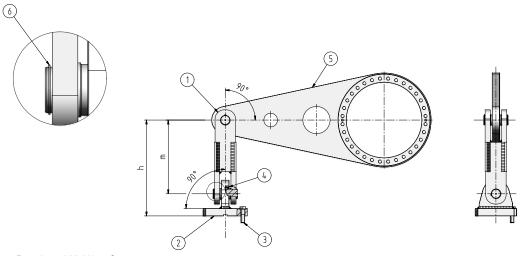
 $R_m \min \ge 500 \text{ N/mm}^2$

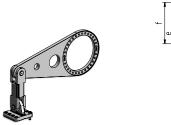

Size	L _{min}	G _{min}	S _{min}	F _{min}	kg
001A	325	10	15	20	3
002A	325	10	15	20	3
003A	375	13	15	20	4
004A	375	13	15	20	4
006A	375	13	15	20	4
009A	450	18	20	30	8
012A	450	18	20	30	8
015A	450	18	20	30	8
018A	550	23	25	35	16
021A	550	23	25	35	16

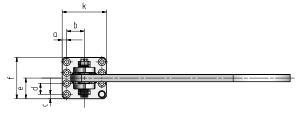
System with asymmetrical torque arm with ball bearing (EP series, sizes 030-710)

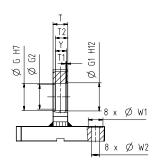
Output designs **H** and **M** can be considered with rigid shaft fastening.

Output types **T** are considered less rigid thanks to its connetion with splined shaft and to fastening backlash. Output types **H** and **M** are to be preferred only when occurring the following conditions:

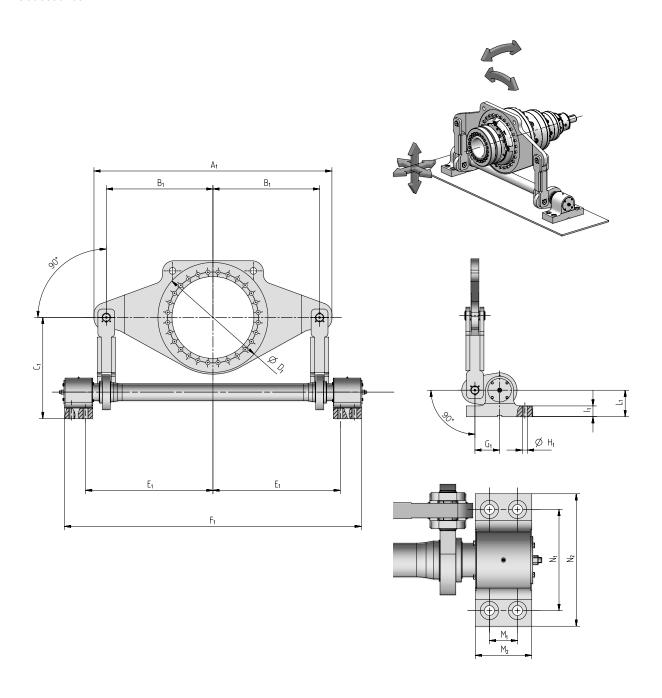

- shaft mounting when gear reducer has to support overhaning parts, e.g. combined units EP+G+motor and eventual accessories on baseplate with high bending torque
- applications with minimum backlash values
- · severe operating conditions, frequent reversals, dusty and particularly aggressive environments
- · high reliability over the years+


Size	L _{min}	В	A	С	R	G _{min}	S _{min}	S1	S2	X	F	F1	d mm	ball bearings Schaeffler	F2	L1	L2	∯ kg
030	600	655	360	835	55	28	30	2,15	25	22,2	47	58	35	GE35-UK-2RS	54	285	354	28
042	700	762	420	972	62	33	35	2,15	28,5	24,2	62	65	40	GE40-UK-2RS	54	340	412	43
060	800	862	455	1 089,5	62	33	35	2,15	28,5	24,2	62	65	40	GE40-UK-2RS	54	365	447	56
085	900	968	520	1 228	68	38	40	2,65	32,5	27,7	68	71	45	GE45-UK-2RS	62	425	510	77
125	1 000	1 075	585	1 367,5	75	41	45	2,65	36,5	30,7	75	78	50	GE50-UK-2RS	67	470	572	113
180	1 100	1 190	645	1 512,5	90	45	50	3,15	39,2	43	90	93,5	60	GE60-UK-2RS	82	520	633	145
250	1 250	1 355	730	1 720	105	55	60	4,15	50	44,2	105	109	70	GE70-UK-2RS	95	585	718	235
355	1 400	1 520	830	1 935	120	60	65	4,15	55	49,2	120	124	80	GE80-UK-2RS	108	665	810	315
500	1 550	1 680	910	2 135	130	65	70	4,15	60	54,2	130	134	90	GE90-UK-2RS	120	730	890	410
710	1 700	1 850	1 000	2 350	150	75	80	4,15	67,5	59,2	150	155	100	GE100-UK-2RS	135	810	977	562


System with asymmetrical foot of torque arm (EP series)


Listed below are the recommended dimensions for the ground connection brackets of the torque arms. Possibility of customization upon request.

 $R_m \min \ge 500 \text{ N/mm}^2$



Item	Description
1	Connecting rod
2	Foot
3	Screw UNI 5739
4	Ball bearing GE-UK-2RS
5	Torque arm
6	Circlip DIN 7435

Size	m	h	С	d	е	f	а	b	k	G	G1	G2	W1	W2	Screw	T1	T2	Т	Υ
030	250	340	25	45	92,5	185	25	67,5	185	55	58	47	38	20	M18 10,9 - 8x	2,15	25	30	22,2
042	295	400	27,5	55	110	220	27,5	80	215	62	65	54	45	24	M22 10,9 - 8x	2,15	28,5	35	24,2
060	315	420	27,5	55	110	220	27,5	80	215	62	65	54	45	24	M22 10,9 - 8x	2,15	28,5	35	24,2
085	360	480	30	60	120	240	30	92,5	245	68	71	62	50	26	M24 10,9 - 8x	2,65	32,5	40	27,7
125	400	535	35	62,5	128,75	257,5	32,5	102,5	270	75	78	67	55	30	M27 10,9 - 8x	2,65	36,5	45	30,7
180	485	645	37,5	75	150	300	37,5	122,5	320	90	93,5	82	65	33	M30 10,9 - 8x	3,15	43	50	39,2
250	560	740	40	90	175	350	40	140	360	105	109	95	65	36	M33 10,9 - 8x	4,15	50	60	44,2
355	650	845	40	95	182,5	365	40	155	390	120	124	108	65	36	M33 10,9 - 8x	4,15	55	65	49,2
500	725	948,5	50	110	215	450	50	175	450	130	134	120	80	42	M39 10,9 - 8x	4,15	60	70	54,2
710	800	1050	52,5	125	240	480	55	195	500	150	155	135	85	45	M42 10,9 - 8x	4,15	67,5	80	59,2

Dynamic torque arm assembly and system flexibility

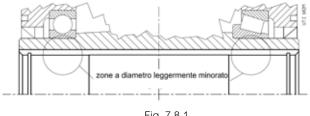
The torque arm with double fulcrum and the ground-fixed torsion bar enable the gearbox to follow the movements of the driven shaft during operation and provide an elastic reaction capable of absorbing torque torsion overloads. The allowable displacement values are shown in the figure, are a function of size, and should be checked when selecting accessories.

Size	A ₁	B ₁	C ₁	D ₁	E ₁	F ₁	G ₁	H ₁	I ₁	L ₁	M ₁	\mathbf{M}_2	N ₁	N ₂
250	1670	750	700	730	888.5	2041	165	39	55	170	84	180	157.5	157.5
355	1870	850	860	820	1000	2300	175	45	80	195	100	200	350	450
500	2120	950	900	880	1135	2645	220	45	70	229	125	250	450	590
710	2346	1063	1060	980	1248	2871	220	45	95	235	125	250	450	590

7.8 - Hollow low speed shaft mounting

For machine shaft ends onto which the hollow shafts of gear reducers are to be keyed, h6, j6, and k6 tolerances are recommended, according to requirements (duty type, overloads, etc.).

Important! The shoulder diameter of the driven machine shaft end abutting with the gear reducer must be at least 1,18 ÷ 1,25 times the internal diameter of the hollow shaft. For other data on machine shaft end, in case of standard hollow low speed shaft, stepped shaft, with locking rings or bushing, with shrink disc see Rossi technical catalogs.


When assembling a hollow low speed shaft gear reducer verify that the hollow shaft is in line with the machine shaft end.

Attention! For vertical ceiling-type mounting and only for gear reducers equipped with locking rings or bush, gear reducer support is due only to friction, for this reason it is advisable to provide it with a fastening

Warning! Even if hollow low speed shaft are completely machined in H7 tolerance, a check through bott could reveal two zones with **slightly lowered** diameter (see fig. 5.6.1): this lowering is intentional and not affecting the **keying quality** – which is **improved** in terms of **duration** and **precision** – and is nt hindering the mounting of machine shaft end executed as shown in fig. 7.8.1.

Warning! When mounting the gear reducer on the machine shaft end, D diameter (**, see fig. 7.8.2) at hollow shaft engagement (standard, stepped shaft, with shrink disc) it is slightly oversized compared with the rated dimensions: However this won't affect the connection reliability.

Gear reducers

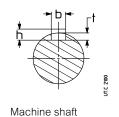
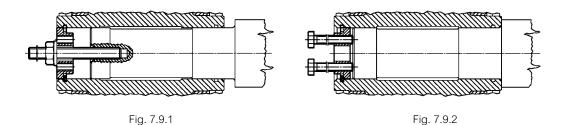


Fig. 7.8.1

Fig. 7.8.2

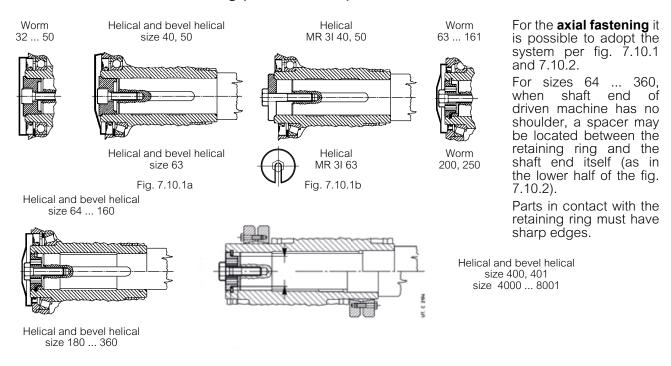
Tab. 7.8.1 - Hollow low speed shaft (A, G, H series)


Hole		Pa	arallel k	еу			Keyway	
D Ø H7	b h9	×	h h11	×	l*	b H9 hub N9 shaft	t shaft	t ₁
19	6	×	6	×	50 ²⁾	6	3,5	21,8 ³⁾
24	8	×	7	×	63 ²⁾	8	4	27,3 ³⁾
28	8	×	7	×	63	8	4	31,2
30	8	×	7	×	63	8	4,5 ¹⁾	32,7 ¹⁾
32	10	×	8	×	70	10	5	35,3
38	10	×	8	×	90	10	5,5 ¹⁾	40,7 ¹⁾⁴⁾
40	12	×	8	×	90	12	5 ¹⁾	43,3
48	14	×	9	×	110	14	5	51,8
60	18	×	11	×	140	18	7	64,4
70	20	×	12	×	180	20	8 ¹⁾	74,3 ¹⁾
75	20	×	12	×	180	20	7,5	79,9
80	22	×	14	×	200	22	9	85,4
90	25	×	14	×	200	25	9	95,4
100	28	×	16	×	250	28	10	106,4
110	28	×	16	×	250	28	10	116,4
125	32	×	18	×	320	32	11	132,4
140	36	×	20	×	320	36	12	148,4
160	40	×	22	×	400	40	14¹)	168,3¹)
180	45	×	25	×	400	45	15	190,4
200	45	×	25	×	600	45	15	210,4
220	50	×	28	×	600	50	17	231,4
250	56	×	32	×	750	56	20	262,4
280	63	×	32	×	750	63	20	292,4
310	70	×	36	×	840	70	22	324,4

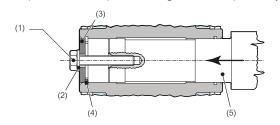
Tab. 7.8.2 - Hollow low speed shaft (**iFIT - iO** series)

				,				
Hole			Key				Keyway	
D Ø H7	b h9	×	h h11	×	l*	b H9 hub N9 shaft	t shaft	t ₁
30 35 40	8 10 12	× × ×	7 8 8	× × ×	50 56 70	8 10 12	4 5 5	33,3 38,3 43,3
50 60 70	14 18 20	× × ×	9 11 12	× × ×	80 110 125	14 18 20	5,5 7 7,5	53,5 64,4 74,9

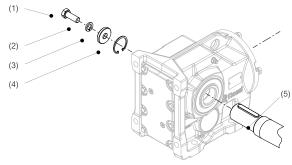
- Recommended length
- Non-unified values.
- For worm gearboxes dimension $I^* = 36$ and 45 respectively.
- 3) For worm gearboxes dimension $t_1 = 21.7$ and 27.2 respectively.
- 4) For worm gearboxes dimension t₁ = 41.3


7.9 - Gearbox assembly and disassembly (A, G, H series)

When **assembling** and **disassembling** the gear reducers and gearmotors with hollow low speed shaft and groove for retaining ring – both with keyway and with shrink disc - proceed as per fig. 7.9.1 and 7.9.2, respectively (excluding helical gearmotors MR 3I 100 with motor size 112 and MR 3I 125 with motor size 132; consult us).

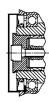

For helicalsha gearmotors MR 3I 64 ... 81, first insert the washer fitted with a screw and snap ring into the hollow shaft of the gearbox (on the opposite side of the motor), then mount the gearbox on the machine shaft end.

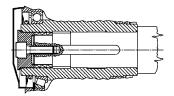
7.10a - Gear reducer axial fastening (A, G, H series)



7.10b - Gear reducer mounting and axial fastening (iFIT - iO series)

To facilitate the **assembly** of hollow low speed shaft gearboxes and gearmotors, both with keyway and locking units, proceed as depicted in Figs. 5.7.1 respectively




Worm	Tightening torque M_s N m
M10/M12	20
M16	40
M20	80

- (1) Fastening screw
- (2) Locking washer
- (3) Thrust bush
- (4) Elastic retaining ring
- (5) Machine shaft with shoulder

7.11a - Gear reducer keying with key and locking rings or bush (A, G series)

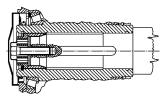


Fig. 7.11.1

Fig 7.11.2

The use of **locking rings** (fig. 7.11.1) or of **locking bushing** (fig. 7.11.2) will permit easier and more accurate installing and removing and to eliminate backlash between key and keyway; friction system compatible with ATEX design.

The locking rings or the locking bushing are fitted after mounting (for MR 3I 64 ... 81 insert the bushing onto machine shaft end or into hollow shaft before mounting; pay attention when positioning the keyway). Do not use molybdenum bisulphide or equivalent lubricant for the lubrication of the parts in contact. When tightening the bolt, we recommend the use of a locking adhesive LOCTITE 601. For vertical ceiling-type mounting, contact us.

In case of axial fastening with locking rings or bushing - especially when having heavy duty cycles, with frequent reversals – verify, after some hours of running, the bolt tightening torque and eventually apply the locking adhesive again.

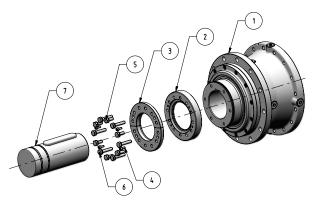
Respect the tightening torques stated in the table 7.11.1.

Attention! In applications with travelling lifts, the locking bush isn't sufficient anymore to grant a stable keying of the hollow low speed shaft with machine shaft end, even when the axial fastening bolt is fixed with locking adhesive. In these cases, it is necessary to key with hollow shaft and shrink disc. This is valid, in general, also when there is a high frequency of startings and brakings motion reversal and when the inertia ratio J/J_0 is very high (> 5).

Tab. 7.11.1 - Tightening torque for axial fastening bolts with rings or locking bush

			Gear reducer size															
Ocates	Α	32	40	50	63 64	_	80 81	_	125 126	160 161	_	200	_	250	_	_	_	-
Series —	G	40	50	_	63 64	80	81	100	125	140	160	180	200	225	250	280	320 321	360
Screv UNI 5737-8		M8 ¹⁾	M8 ¹⁾	M10 ¹⁾	M10	M10	M10 ²⁾	M12 ²⁾	M14 ²⁾	M16	M20	M20 ²⁾	M24	M24 ²⁾	M30	M30 ²⁾	M36	M36 ³⁾
Tightening to	orque $M_{_{ m S}}$	29	35	43	43	51	53	92	17	21	34	43	66	83	135	166	257	315

¹⁾ UNI 5931-84 cl. 8.8 (excluding MR 3I). 2) UNI 5737-88 cl. 10.9 (excluding worm gear reducer sizes 80, 81, 125, 126).

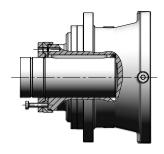

³⁾ UNI 5931-84 cl. 10.9.

7.11b - Keying with locking rings (EP series)

In case of N output, follow the instructions listed below:

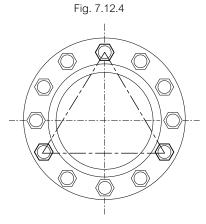
Installation

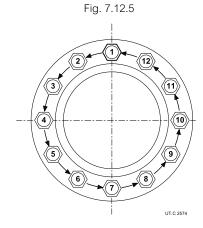
- Remove the tab from the machine shaft end (number 7).
- Place the o-ring in the ring (number 2) on the machine shaft between key seat and circular recess for axial locking. Place the o-ring in the seat of the ring.
- Install the key on the end of the machine shaft and apply Kluberpaste MR401(or similar) to the end of the machine shaft.
- insert the reducer (number 1) along the full length of the keyway making sure you have enough space to install the two retaining half-rings
- Place the securing half rings (number 3) on the machine shaft end. Assemble the ring (number 2) with short UNI 5931 screws (number 4) and medium length UNI 5739 screws. Lightly tighten a first set of three screws positioned at about 120°. Tighten gradually and evenly by means of torque wrench.
- Once the fasteners are installed, check that there is no axial movement; if not, you should check the dimensions of the components or contact Rossi S.p.A. before proceeding further.
- After an initial check of axial locking (see above), assemble the gearboxes with the locking system using UNI 5739 long screws according to the type and torque class of the screws. Lightly tighten a first set of three screws positioned at about 120°. Tighten the screws gradually and evenly by means of a torque wrench.


Pos.	Description
1	Gear reducer
2	Seal ring type o-ring
3	Half-ring
4	Screw UNI 5931
5	Short screw UNI 5739
6	Long screw UNI 5739
7	Machine shaft end

Disassembly

- · Clean all oxidized areas.
- Remove all UNI 5739 fastening screws.
- Insert the long UNI 5739 screws into the holes previously occupied by medium length UNI 5739 screws and use them as a puller to remove the gearbox from the driven shaft.




7.12 - Mounting of hollow low speed shaft with shrink disc

Attention! Verify that machine shaft end has dimensions, tolerances and roughness as per fig. 7.12.1 ... 7.12.3 and table 7.12.1; the respect of these prescriptions guarantees the correct running of the shrink disc and is an integrating part of ATEX protection system.

Pre-arrange a proper protection of the shrink disc against the accidental contact and against the dust; when it is not possible (eg.: machine through shaft) foresee an adequate maintenance plan to guarantee that the thickness of the material is reduced and never exceeding 5 mm.

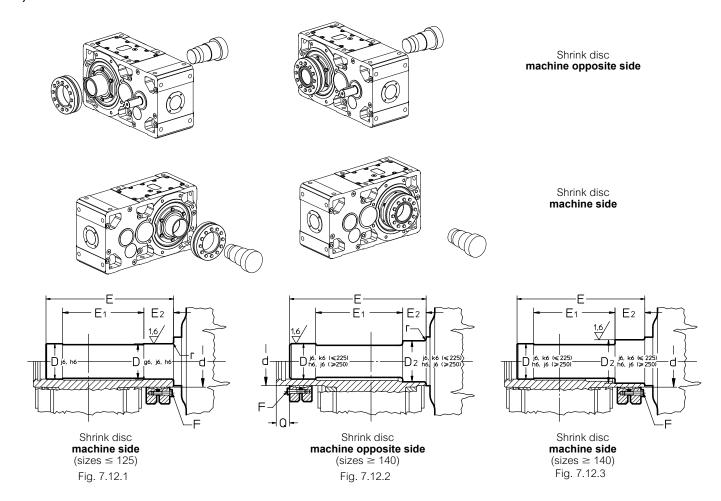
Installing

Attention! Do not tighten the screws of shrink disc before mounting the gear reducer onto machine shaft in order not to deform the hollow shaft. When keying the shrink disc follow these instructions:

- carefully degrease the surfaces of hollow shaft and shaft end of driven machine to be fitted;
- mount the shrink disc on gear reducer hollow shaft by lubricating first the external surface; position axially to dimension «Q» (see tab. 7.12.1) the shrink disc.
- slightly tighten a first group of three screws positioned at about 120° as shown in fig. 7.12.4;
- tighten the screws by a dynamometric wrench set at a value approximately higher than 5% compared to the one foreseen in table 7.12.1 – the screws of shrink disc must be gradually and uniformly tightened, with continous sequence (not diagonally!) see fig. 7.12.5 and during several phases (approx. 1/4 rotation each time) until the 1/4 rotation is not possible anymore;
- tighten again 1 or 2 times with dynamometric wrench verifying that the tightening torque stated in table 7.12.1 has been realized;
- when having heavy duty cycles, with frequent reversals, verify again after some hours of running, the bolt tightening torque.
- verify the screw titightening torque at every maintenance interval (oil change) or in case of anomalous vibrations (see table 14.2).

Removing

Before disassembling, ensure that no torque/load is applied on the shrink disc, on shaft or other connected



Attention! Do not completely remove fastening screws before locking rings are disengaged. Risk of serious injury!!!

Clean off any rusty areas.

Loosen the fastening screws one after the other only by using approx. 3 turn at a time and by a continuous sequence (not crossing), until shrink disc can be moved on hollow shaft.

Remove the gear reducer from machine shaft end.

Tab. 7.12.1 - Hollow low speed shsaft and machine shaft end with shrink disc 4)

Gear	D	D ₂	d	E		E	1	E	2		F	M _s	Q
reducer series G, H	Ø H7	H7	Ø		1)		1)		1)		5737-88 . 10.9	N m 2)	
40	20	_	24	99,5	_	65	_	25	-	M5	n. 6	4	-
50	25	_	30	116,5	_	77	_	30	-	M5	n. 7	4	-
63	30	_	38	135,5	_	86	_	34	-	M6	n. 5	12	-
64	35	_	44	140	_	86	_	36	_	M6	n. 7	12	-
80, 81	40	_	50	166	_	103	_	39,5	_	M6	n. 8	12	-
100	50	_	62	197	_	122	_	46,5	_	M8	n. 6	30	-
125 140 160	65 70 80	- 75 85	80 90 105	239 273 307	294,5 329	148 180 199	- 192,5 208	55 52 62	- 52 57	M8 M8 M10	n. 8 n. 10 n. 9	30 30 60	- 27,5 29
180	90	100	120	335	363	221	228	65	63	M10	n. 12	60	35
200	100	110	130	377	402	251	260	72	66	M12	n. 10	100	33,5
225	110	120	140	404	428	265	277	78	75	M12	n. 12	100	32,5
250	125	135	160	461	493	307	318	86	84	M16	n. 8	250	45
280	140	150	180	506	543	324	337	104	94	M16	n. 10	250	47
320, 321	160	170	200	567	607	375	388	104	107	M16	n. 12	250	50
360	180	195	230	621	668	400	414	124	116	M16	n. 15	250	57
4000, 4001*	210	220	260	754	788	446	480	165 ⁵⁾	165 ⁵⁾	M20	n. 14	490	47
4500, 4501	230	240	280	768	799	434	465	180 ⁵⁾	180 ⁵⁾	M20	n. 16 ³⁾	490	44
5000, 5001	260	270	320	935	970	565	600	200 ⁵⁾	200 ⁵⁾	M20	n. 20 ³⁾	490	53
5600, 5601	290	300	360	958	992	538	572	225 ⁵⁾	225 ⁵⁾	M20	n. 24 ³⁾	490	55
6300, 6301	325	335	400	1063	1110	603	650	250 ⁵⁾	250 ⁵⁾	M24	n. 21 ³⁾	840	74
7101	360	370	460	1335	1394	774	782	280	327	M27	n. 28	1250	96
8001	400	410	530	1548	1606	879	886	315	400	M27	n. 34	1250	107

^{*} Values valid for sizes 400, 401.

¹⁾ Values valid for shrink disc on machine opposite side. 2) Screw tightening torque

³⁾ In case of shrink disc on machine side n. screws 14 for size 4500 ... 4501 (450 ... 451); 16 for sizes 5000 ... 5601 (500 ... 561); 18 for sizes

^{6300 ... 6301 (630 ... 631),} respectively.
4) For design with labyrinth seal on low speed shaft, the dimensions E, E1, E2 change: consult us.
5) For R 4I: 130 (4000 ... 4501); 165 (5000, 5001); 180 (5600, 5601); 200 (6300, 6301).

Serie iFIT iO

Fig. 7.12.6 Hollow low speed shaft with shrink disc - side A and side B

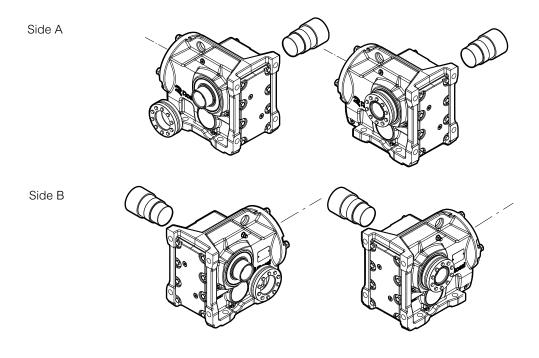
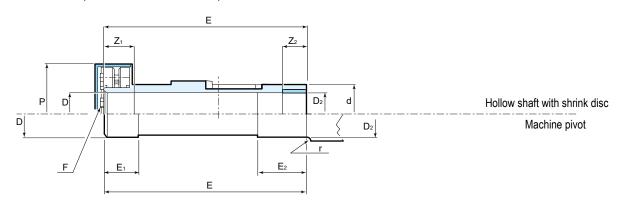



Fig. 7.12.7 Hollow low speed shaft and machine pivot with shrink disc

Tab. 7.12.2 Hollow low speed shaft and machine pivot with shrink disc

0			ı	Machin	e pivo	t		Hollow shaft									
Gear red. size iO	D	HB	D ₂ HD	E	E,	E ₂	r	D	HB	D ₂ HD	E		F M _s	d	Р	Z ₁	Z ₂
	h6	h6	h6					H7	H7	H7			[N m]				
373	30	30	32	146	36	25	0,4	30	30	32	146	5 x M8	41	45	77	31	20
473	35	35	36	177	32	20	0,4	35	35	36	177	7 x M8	41	50	83	37	25
573	40	40	42	195	31	25	0,4	40	40	42	195	7 x M8	41	55	83	26	20
673	40	40	42	208	43	25	0,4	40	40	42	208	8 x M8	41	55	93	38	20
773	50	50	52	241	41	35	0,4	50	50	52	241	10 x M8	41	70	114	36	30
873	65	65	66	281	46	45	0,4	65	65	66	281	11 x M8	41	85	159	41	40
973	75	75	76	345	60	55	0,4	75	75	76	345	12 x M8	41	95	174	55	50

EP series

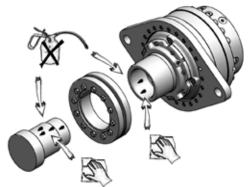
For installation in case of hollow shaft and shrink disc, follow the statements of EP series - Operating instructions.

Attention! Verify that the shaft end have dimensions, tolerances and roughness as stated in the figure and in the table stated here following; the consideration of following prescriptions ensures the correct running of shrink disc, and is an integrating part of ATEX protection system.

For shaft ends type M,S + WF,T + WT use screws and tightening torques as shown on page 29 and 30.

Attention! Installing and removal operations should be carried out with pullers and jacking screws using the tapped holes at the shaft butt-end (see ch. «Fitting of components to shaft end») taking care to avoid impacts and shocks which may irremediably damage the bearings, the circlips or other parts.

Hollow shaft mounting with shrink disc

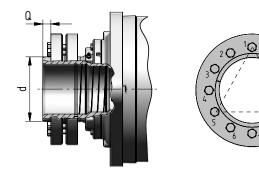

For the shaft end detail of machines where the hollow shaft of the gear reducer is to be keyed, follow the instructions see EP catalog.

Installation

If the shrink disc is not supplied by Rossi, please carefully follow the manufacturer's instructions

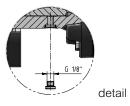
When keying the shrink disc supplied by Rossi follow these instructions:

- carefully degrease the surfaces of hollow shaft and shaft end of driven machine to be fitted;
- mount the shrink disc on gear reducer hollow shaft by lubricating first only the external surface of hollow shaft; pay attention to locate axially the shrink disc at dimension «Q» shown in table below (values valid only for our shrink disc);
- slightly tighten a first group of three screws positioned at about 120° as shown for example in the figure;

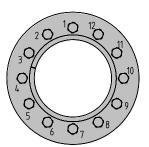


Tab. 7.12.3

Size	d	Q
001A	55	8
002A	62	8
003A	68	10
004A	80	15
006A	90	8
009A	100	14
012A	115	13
015A	120	13
015A	125	18
018A	130	13
021A	130	13
030A	155	10
042A	165	10
060A	185	10
085A	200	10


Tab. 7.12.4

		_
Size	d	Q
125A	240	13,5
180A	260	13
250A	300	16
355A	340	15
500A	360	15
710A	420	15


mount the gear reducer on the machine shaft end; insert the shaft slowly to allow an air escape (from size 030A, open the plug located on the shaft, see below);

- gradually and uniformly tighten, by means of dynamometric wrench, the screws of shrink disc at torque value shown in the fig. below, by a continuous sequence (not crossing) using approximately $\frac{1}{4}$ turns for several passes until $\frac{1}{4}$ turns can no longer be achieved;
- continue to apply overtorque for 1 or 2 more passes and at the end verify the bolt tightening torque;
- when having heavy duty cycles, with frequent reversals, verify again after some hours of running, the bolt tightening torque.

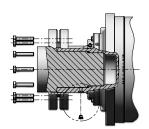
Tab. 7.12.5

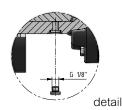
Size	screws	Quantity	T tightening [N m]
001A	M6	8	12
002A	M8	6	30
003A	M8	6	30
004A	M8	8	30
006A	M8	10	30
009A	M8	12	30
012A	M10	10	59
015A	M10	12	59
018A	M12	10	100
021A	M12	10	100
030A	M12	15	100
042A	M16	10	250
060A	M16	15	250
085A	M16	15	250

Tab. 7.12.6

Size	screws	Quantity	T tightening [N m]
125A	M20	15	490
180A	M20	18	490
250A	M20	20	490
355A	M24	20	840
500A	M24	20	840
710A	M24	30	840

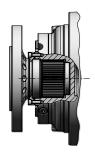
Removing


Do not completely remove fastening screws before locking rings are disengaged. Risk of serious injury!!!


Clean off any rusty areas.

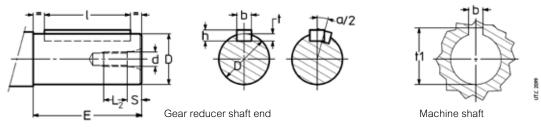
Loosen the fastening screws one after the other only by using approx. ½ turn at a time and by a continuous sequence (not crossing), until shrink disc can be moved on the hollow shaft.

Remove the customer shaft or the gear reducer. For sizes above 030A to make it easier is possible to inject low pressure oil through a threaded hole located on the hollow shaft (see below).



"T" outputs can be used for gear reducer shaft mounting on solid splined shaft end and on solid splined gear wheel flange.

For the assembly of "T" output to a solid splined gear flange consider the following instructions:

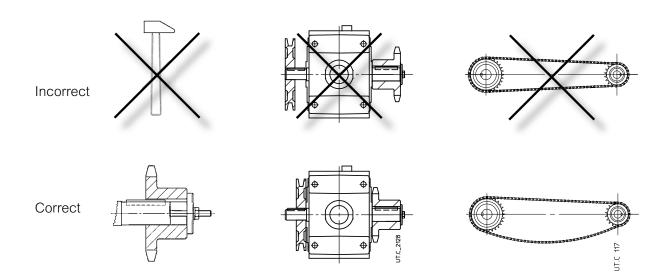

- disassemble the metal plugs on splined gear holes pre-arranged for the half-ring fastening screws.
- lubricate carefully the splined shaft surfaces with grease for industrial applications with heavy loads and
- insert the O-ring seal on the flange shaft
- in case of mounting with wheel flange: orientate the accessory before mounting; identify the tooth of splined shaft timing with the relevant recess positioned on gear reducer shaft. Timed tooth and recess are identified as per hole see sketch below.
- insert slowly the splined shaft so that air can flow out
- assemble radially the cover compressing the O-ring.
- screw with cross tightening the half-ring fastening screws taking care to tighten to relevant torque.
- close the splined gear flange using plugs

7.13 - Fitting of components to low and high speed shaft ends

Tab. 7.13.1 - Low and high speed shaft ends

	.10.1			<u> </u>	Shaf							F	Para	llel	key			Key	way
1	D				E	d	S	L2		$\alpha/2^{4)}$	b			×			b	t	t ₁
Ø	1)	2)	3)	1)	2) 3)	Ø		1)	2) 3)	arc min	h9		h11		1)	2) 3)	H9 hub N9 shaft	shaft	hub
11 14 16	j 6 j 6 j 6	- - -	_ _ _	23 30 30	20 25 -	M5 M6 M6	3,6 4,6 4,6	9,4 11,4 11,4	- - -	- - -	4 5 5	× ×	4 5 5	× ×	18 25 25	12 16 -	4 5 5	2,5 3 3	12,8 16,3 18,3
19 24 25	j 6 j 6 –	h7 h7 –	- - k6	40 50 -	30 36 ⁷⁾ 50	M6 M8 M10	4,6 5,9 7,6	11,4 15,1 -	13,4 17,1 20,4	5,43 5,16 -	6 8 8	× × ×	6 7 7	× × ×	36 45 -	25 25 40	6 8 8	3,5 4 4	21,8 27,3 28,3
28 30 30	j 6 - -	– h7 –	- - k6	60 58 -	42 58 ⁷⁾ 60	M8 M10 M10	5,9 7,6 7,6	15,1 - -	- 20,4 20,4	- 4,13 -	8 8 8	× × ×	7 7 7	× × ×	45 45 –	36 45 50	8 8 8	4 4 4	31,3 33,3 33,3
32 35 38	k 6 k 6 k 6	h7 - h7	- - -	80 - 80	58 ⁷⁾ 70 58	M10 M12 M10	7,6 9,5 7,6	18,4 - 18,4	20,4 26,5 20,4	3,87 - 3,27	10 10 10	× × ×	8 8 8	× × ×	70 - 70	50 56 50	10 10 10	5 5 5	35,3 38,3 41,3
40 40 42	– – k 6	h7 - -	- k6 -	- - 110	58 80 –	M10 M16 M12	7,6 12,7 9,5	- - 22,5	20,4 35,3 -	3,7	12 12 12	× ×	8 8 8	× ×	50 - 90	50 70 -	12 12 12	5 5 5	43,3 43,3 45,3
45 48 50	k 6 k 6 –	– h7 –	- k6 k6	110 110 –	82 82 100	M12 M12 M16	9,5 9,5 12,7	22,5 22,5 -	- 26,5 35,3	- 3,08 -	14 14 14	× × ×	9 9 9	× ×	90 90 -	- 70 80	14 14 14	5,5 5,5 5,5	48,8 51,8 53,8
55 60 60	m 6 m 6 –	– h7 –	k6 m6	110 140 –	82 105 ⁵⁾ 120	M12 M16 M20	9,5 12,7 16	22,5 27,3 -	- 35,3 44	2,46 -	16 18 18	× × ×	10 11 11		90 110 –	70 90 110	16 18 18	6 7 7	59,3 64,4 64,4
70 70 75	m 6 - m 6	h7 - -	k6 m6 -	140 - 140	105 140 105	M16 M20 M16	12,7 16 12,7	27,3 - 27,3	35,3 44 -	2,55 - -	20 20 20	× × ×	12 12 12	× × ×	- 125	125 125 90	20 20 20	7,5 7,5 7,5	74,9 74,9 79,9
80 90 95	m 6 m 6 m 6	h7 h7 –	k6 k6 -	170 170 170	130 130 –	M20 M20 M20	16 16 16	- 34 34	44 44 –	2,23 1,99 -	22 25 25	× × ×	14 14 14	×	140 140 140	110 110 -	22 25 25	9 9 9	85,4 95,4 100,4
100 110 125		j6 j6 j6	k6 k6 k6	210 210	165 165 200 ⁶⁾	M24 M24 M30	19 19 22	- 41 -	41 41 45	1,79 1,63 1,71	28 28 32	× × ×		×	- 180 180	140 140 180	28 28 32	10 10 11	106,4 116,4 132,4
140 160 180	_	j6 j6 j6	k6 k6 k6	- - -	200 240 240	M30 M36 M36	22 27 27	- - -	45 54 54	1,52 1,33 1,18	36 40 45	× × ×	22	×	180 220 220	180 220 220	36 40 45	12 13 15	148,4 169,4 190,4
190 200 200	_	- - -	m6 m6 m6	- - -	280 280 350	M36 M36 M36	27 27 27	- - -	54 54 54	1,12 1,07 1,07	45 45 45	× × ×	25 25 25	× × ×	- - -	250 250 320	45 45 45	15 15 15	200,4 210,4 210,4
210 220 240	_	_ _ _	m6 m6 m6	- - -	300 300 330	M36 M36 M45	27 27 33	- - -	54 54 67	1,02 0,97 1,06	50 50	×	28 28 32		_ _ _	280 280 300	50 50 56	17 17 20	221,4 231,4 252,4
250 270 280	_ _	- - -	m6 m6 m6	- - -	330 380 380	M45 M45 M45	33 33 33	- - -	67 67 67	1,02 0,94 0,91	56 63	×	32 32 32	×	_	300 360 360	56 63 63	20 20 20 20	262,4 282,4 292,4
300 320	_	- -	m6 m6	-	430 430	M45 M45	33 33	_	67 67	0,85 0,80	70 70	×	36 36	×	_	400 400	70 70	22 22	314,4 334,4
360 400			m6 m6	_	590 660	M45 M45	33 33	_	67 67	1,45 1,50	Į.		40 45			550 610	90 90	25 28	375,4 417,4

4) Maximum angular disalignment of keyways on double extension shafts.
5) For helical and bevel helical gear reducers, standard low speed shaft end E = 97 (E = 101 for double extensions shaft); value not unified.


Standard low speed shaft end

¹⁾ Values valid for high speed shaft end. 2) Values valid for standard low speed shaft end.

³⁾ Values valid for solid low speed shaft end.

⁶⁾ Value not to standard.

⁷⁾ For helical gear reducer MR 3I with standard low speed shaft end, dimension E increases by 1. 8) For worm gear reducer size 81 E = 80.

Generally, it is recommended to machine the hole of parts keyed onto shaft end, tolerance H7. For high speed shaft end with D > 55mm tolerance can be G7, progided that load is uniform and light.

For low speed shaft with D < 180 tolerance must be **K7**, provided that load is not uniform and light.

Before mounting, thoroughly clean mating surfaces and lubricate against seizure and fretting corrosion.

Attention! Installation and removal operations should be carried out with the aid of **jacking screws** and **pullers** using the tapped hole at the shaft butt-end (see table in fig. 2) taking care to avoid impacts and shocks which **may irreparably damage the bearings**, the circlips or other parts or cause sparks; for H7/m6 and K7/j6 fits it is advisable that the part to be keyed is preheated to a temperature of $80 \div 100$ °C.

The couplings having a tip speed on external diameter up to 20 m/s must be statically balanced; for higher tip speeds they must be dynamically balanced.

Where the transmission link between gear reducer and machine or motor generates shaft end loads, ensure that: loads do not rise above catalogue values:

- loads do not rise above catalog values and values of application design;
- transmission overhang is kept to a minimum;

drive-chains should not be tensioned (if necessary – alternating loads and/or motion – foresee suitable chain tighteners); if the peripheral speed of the chain is greater than 1 m/s it is necessary to install proper malfunction markers such as aligning sensors, etc.

- in the gear transmission there is an adequate gear mesh (≈ 0,03 ÷ 0,04 · m) between pinion and rack (bushing).
- drive-belts should not be over-tensioned.

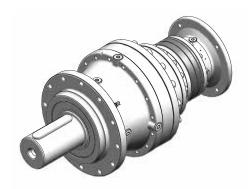
Use belts with electric bleeder resistance to mass $< 10^{9} \Omega$

For splined couplings apply adequate products against oxydation.

7.14 - Backstop device

A, E, G, H series

The presence on gear reducer of backstop device is stated by the arrow near the low speed shaft, **indicating the free rotation**.


Provide a protection system where a backstop device breaking could cause personal injury or property damage.

Before starting, make sure that the direction of rotation in machine, gear reducer and motor all correspond correctly.

Attention! One or more starting in the false direction, even if short, could irremediably damage the backstop device, the coupling seats and/or the electric motor; they could also cause the overheating of the backstop device over the temperature limit of 135 °C and the generation of mechanical sparks.

EP series

EP gear reducers, according to size, can be equipped with a backstop device. This system permits the rotation in one specific direction avoiding thus the counterrotation when the drive is disconnected. The exact direction of the free rotation is stated by a proper gear reducer nameplate.

Attention! Do not start the motor in the blocking direction!

Several damage can be occur!.

7.15 - Verification of service factor fs required by the application

Service factor fs takes into account the different running conditions (type of load, running time, frequency of starting, other considerations) which must be referred to when performing calculations of gear reducer selection and ATEX verification.

The **minimum service factor required** by the application is given by the following ratio:

fs required
$$\geq$$
 fs₁ · **fs**₂ · **fs**₃ · **fs**₄ · **fs**₅ · **fs**_{ATEX}

or in case of selection $\mathbf{n}_2 \cdot \mathbf{L}_h$:

fs required
$$\geq$$
 1 · **fs**₂ · **fs**₃ · **fs**₄ · **fs**_{ATEX}

Where the values of \mathbf{fs}_1 , ..., \mathbf{fs}_5 are given in the tables 7.15.1 ... 7.15.6, considering that:

- in case of selection $\mathbf{n}_2 \cdot \mathbf{L}_h$; $\mathbf{fs}_1 = 1$; $\mathbf{fs}_5 = 1$
- in case of gearmotors of **iC series**: fs_1 is given by fig. 7.15.7, according to nature of load of driven machine (mass acceleration factor m_j ; for further details see catalog iFIT) and to number of starts/hour and $fs_2 = fs_3 = fs_4 = fs_5 = 1$.

The value of **fs** required thus determined **must not be lower than 1** (or **0,85** for A series).

Details and considerations about service factor.

The values of f_{s_1} ... f_{s_5} stated in the tables 7.15.1 ... 7.15.6 are valid for:

- maximum overload duration on starting, braking, running, 3s; longer time intervals are to be considered as load levels of work cycles;
- the overload frequency must not be multiple or submultiple in that output shaft rotation.

Motors having a starting torque not exceeding nominal values (stardelta starting, particular types of motor operating on direct current, and single-phase motors), and particular types of coupling between gear reducer and motor, and gear reducer and driven machine (flexible, centrifugal, fluid and safety couplings, clutches and belt drives) affect service factor favourably, allowing its reduction in certain heavy-duty applications; consult us if need be.

Tab. 7.15.1 - Service factor fs1 based on the nature of load 1) and running time

	Nature of load of driven machine 1)			1	is ₁ ²⁾		
Ref.	Description			Runnin	g time [h]		
	A series	3 150 h 2 h/d	6 30	· · · · -	500 h	25 000 h 12 h/d	50 000 h 24 h/d
a b c	Uniform Moderate overloads (1,6 times the normal load) Heavy overloads (2,5 times the normal load)	0.67 0.85 1	0.8 1.0 1.2	6	1 1.25 1.5	1.25 1.6 1.9	1.6 2 2.36
	E series	3 150 h	6 30	0 h 12	500 h	25 000 h	50 000 h
	2 301103	≤2 h/d	2÷4	h/d 4÷	8 h/d	8÷16 h/d	16÷24 h/d
a b c	Uniform Moderate overloads (1,6 times the normal load) Heavy overloads (2,5 times the normal load)	0.8 1 1.32	0.9 1.1 1.9	2	1 1.25 1.7	1.18 1.5 2	1.32 1.7 2.24
	G ²⁾ series	2 h/d	4 h.	/d 8	h/d	16 h/d	24 h/d
a b	Uniform Moderate overloads (1,6 times the normal load)	0,8 ³⁾	0,9		1	1.18 1.5	1.32 1.7
С	Heavy overloads (2,5 times the normal load)	1.32	1.5	_	1.7	2	2.24
	H series	2 h/d	4 h.	/d 8	s h/d	16 h/d	24 h/d
a b c	Uniform Moderate overloads (1,6 times the normal load) Heavy overloads (2,5 times the normal load)	1 1.12 1.4	1.1 1.1	8	1 1.25 1.7	1.18 1.5 2	1.32 1.7 2.24
	EP series	1250 h	2500 h	10 000 h	25 000 h	50 000 h	80 000 h
a b c	Uniform Moderate overloads (1,6 times the normal load) Heavy overloads (2,5 times the normal load)	0,85 1,06 1,4	0,9 1,12 1,5	1 1,25 1,7	1,32 1,7 2,24	1,6 2 2,65	1,9 2,36 3,15

See notes at page 47.

Tab. 7.15.2 - Service factor **fs**₂ based on **nature of load** and of **frequency of starting**

	Nature of load of driven machine 1)	fs ₂											
Ref.	Ref. Description			Frequency of starting z [starts/h]									
	A series	4	8	16	32	63	125	250	500				
	E, G series	2	4	8	16	32	63	125	250				
	H series	1	2	4	8	16	32	ı	-				
	EP series	2	4	8	16	32	63	125	-				
а	Uniform	1	1,06	1,12	1,18	1,25	1,32	1,4	1,5				
b	Moderate overloads (1,6 times the normal load)	1	1	1,06	1,12	1,18	1,25	1,32	1,4				
С	Heavy overloads (2,5 times the normal load)	1	1	1	1,06	1,12	1,18	1,25	1,32				

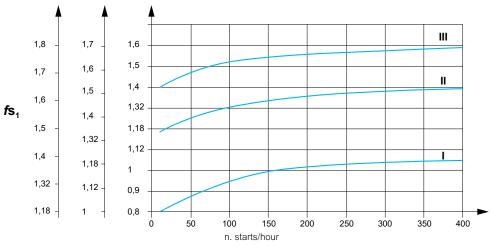
Tab. 7.15.3 - Service factor \mathbf{fs}_3 based on **motor type**

Motor	Motor type					
Description						
Electric three-phase motor	P ₁ ≤ 9,2 kW P ₁ > 9,2 kW	1 1,06 ⁴⁾				
Electric three-phase brake motor		1.06				
Hydraulic		1				
Internal combustion	multi-cylinder single-cylinder	1.25 1.5				

Tab. 7.15.4 - Service factor **fs**₄ based on **reliability level**

Reliability level 5)	fs ₄
Standard	1
Average	1.25
High	1.4

Tab. 7.15.5 - Service factor ${\it fs}_{\rm 5}$ based on output angular speed ${\it n}_{\rm 2}$


Output speed	fs ₅								
n ₂ [min ⁻¹]	serie G	H series							
560 ÷ 355	1,25	-							
355 ÷ 224	1,18	_							
224 ÷ 140	1,12	1,18							
140 ÷ 90	1,06	1,12							
90 ÷ 56	1	1,06							
< 56	1	1							

Tab. 7.15.6 - Service factor \emph{fs}_{ATEX} according to \emph{gear} reducer ATEX design

Gear reducer design	fs	ATEX
	A, E, G, iFIT, EP series	H series
2GD	1,18	1,32
3GD	1,06	1,18

Fig. 7.15.7 - iFIT Series - iC - iO - Service factor **fs**₁ depending on the nature of the driven machine load and the number of starts/hour

Class III - heavy overloads:

 ≈ 2.5 times the normal load (3 < $m_{\rm J} \le 10$)

Class II - moderate overloads:

≈ 1.6 times the normal load $(0.3 < m_{J} \le 3)$

Class I - uniform load:

 $(m_{J} \le 0.3)$

¹⁾ For indication on the type of load of the driven machine according to the application, see Rossi technical catalogs.

²⁾ In case of selection with $n_2 \cdot L_h$ use $f_{S_1} = 1$.

³⁾ Verify that the torque M_2 is lower than or equal to M_{N2} valid for $n_1 < 90$ min⁻¹ (s. Rossi technical catalogs); in presence of variable load, verify for each interval of load cycle.

⁴⁾ For Y- Δ starting, running with inverter or with «soft start» devices, $f_{S_3} = 1$.

⁵⁾ Reliability degrees higher than normal are required in presence of very difficult maintenance, great importance of gear reducer in the production cycle, safety,etc.

7.16 - Thermal power verification Pt [kW] of gear reducer

The nominal thermal power Pt, of gear reducer, stated in the following tables, is that which can be applied at the gear reducer input, without exceeding 95 °C1) approximately oil temperature when operating in following running conditions:

- input speed n₁ = 1 400 min⁻¹;
- mounting position B3;
- continuous duty S1;
- maximum ambient temperature 40 °C;
- maximum altitude 1 000 above sea level;
- air speed ≥ 1,25 m/s (typical value in presence of a gearmotor with self-cooled motor);
- maximum relative humidity 80 %.

Always verify that the power applied **P**1 is lower than or equal to gear reducer thermal power Pt.: table 7.16.1a, table 7.16.1b) multiplied by corrective coefficients \mathbf{f}_1 , \mathbf{f}_2 , \mathbf{f}_3 , \mathbf{f}_4 , \mathbf{f}_5 , \mathbf{f}_{ATEX} (stated in the tables 7.16.2 ... 7.16.7) considering the different operating conditions:

$$P_1 \leq Pt_N \cdot ft_1 \cdot ft_2 \cdot ft_3 \cdot ft_4 \cdot ft_5 \cdot ft_{ATEX}$$

When thermal power is not stated in the tables, consider that the power has been already verified.

When the power applied is not constant and when the exact load cycle is given, it is possible, or advisable, to calculate the equivalent power applied, according to the formula:

$$\mathbf{P}_{1th} = \frac{1}{\eta} \cdot \sqrt[3]{\frac{P_{2_1}^3 \cdot t_1 + P_{2_2}^3 \cdot t_2 + \dots + P_{2_i}^3 \cdot t_i + \dots + P_{2_n}^3 \cdot t_n}{t_c}}$$

where:

 η is the gear reducer efficiency (see ch. 6);

 P_{y_i} [kW] is the power, referred to the gear reducer output, required in the time interval t_i [s]; $t_{\rm c} = t_{\rm 1} + t_{\rm 2} + \dots + t_{\rm i} + \dots + t_{\rm n}$ is the total duration of load cycle [s].

In these cases choose factor \mathbf{n}_2 from the continuous duty column S1.

ATTENTION: in presence of at least a load level with power $P_{2n} > P_{th}$, applied for a duration equal to or higher than $t_{i} = 20$ min, you have to consider this load level in the P_{th} dimensioning.

Tab. 7.16.1a - Nominal thermal nower Pt. for F. G. H. iFIT (iC. iO) series

Tab. 7.16	.1a - N	ominai	tnerm	ai pow	er Pt _N	for E , G	, H, IF	11 (10	, 10) se	ries						
						<i>P</i> t	_N [kW]	- T _{amb}	= 40 °C							
		E	series				iFIT (iC, iO) series									
Train of gears	80 81	100 101	125 126	140	160	180	Trai gea	n of irs	27	37	47	57	67	77	87	97
2I 3I	15 11,2	22,4 17	33,5 25	35,5 26,5	53 40	56 42,5		2 3	6 4,25	6,3 4,75	8,5 6,7	10 7,5	11,8 9	16 11,8	22,4 17	31,5 23,6
							iO	3	-	4,5	6	7,1	8,5	11,8	20	26,5
			:				G	series	S						•	
Train of gears	40	50	63 64	80 81	100	125	140	160	180	200	225	250	280	320 321	360	400 401
1 21 31 41	- 3,35 2,5 -	- 5 3,75 -	11,2 7,5 5,6 4,25	17 11,2 8,5 6,3	25 17 12,5 9,5	37,5 25 19 14	50 28 21,2 -	56 37,5 28 -	80 42,5 31,5		125 67 50 –	140 95 71 –	200 106 80	224 150 112 -	315 170 125 -	236 180 132
CI ²⁾ ICI C2I ²⁾ C3I	3 2,12 - -	4,75 3,15 - 2,36	7,1 4,75 - 3,55	10,6 7,1 - 5,3	16 10,6 - 8	23,6 16 - 11,8	31,5 18 21,2 -	35,5 23,6 28 -			80 - 50 -	90 - 71 -	125 - 80 -	140 - 112 -	200 - 125 -	- 180 132
							Н	serie	S							
Train of gears	4000	0, 4001	45	00, 450)1	5000, 5	001	5600	0, 5601	63	00, 630	1	7101	I	800	01
21 31 41		236 180 132		265 200 150		375 280 212		;	425 315 236		530 400 300		630 475 365		90 67 50	0
CI ²⁾ C2I ²⁾ C3I		224 180 132		315 200 150		– 280 212			_ 315 236		- 400 300		- 475 355		67 50	

Notes of pages 54, 55

₹Rossi 59

¹⁾ Corresponding to an average temperature of the external housing surface of approximately 85 °C; locally housing temperature can achieve the oil temperature.

²⁾ For sizes ≤ 360 with double extension high speed shaft multiply the values of Pt_N by 0,85; for sizes ≥ 400 with double extension high speed shaft multiply Pt_N by 0,85 (CI) or

³⁾ For speed n_x included between two stated values $(n_{\text{sup}}, n_{\text{ref}})$, select the nearest lower value or interpolate: $P_{\text{I}_{\text{N} \otimes \text{pre}}} = (P_{\text{N} \otimes \text{pre}}) - P_{\text{I}_{\text{N} \otimes \text{pre}}}) \cdot (n_x - n_{\text{ref}}) / (n_{\text{sup}} - n_{\text{ref}}) + P_{\text{I}_{\text{N} \otimes \text{pref}}})$ 4) For $n_{\text{worm}} \leq 90 \text{ min}^{-1}$, consult us.

Tab. 7.16.1b - Nominal thermal power \textit{Pt}_{N} of \boldsymbol{A} series

n _{worm} ³⁾								,		u _w	orm									
min ⁻¹	7	10	13	16	20	25	32	40	50	63	7	10	13	16	20	25	32	40	50	63
	Size 32													Size	e 40					
1 400 1 120 900	0.82 - -	0.67 0.61 -	- - -	- - -	0.44 0.4 -	- - -	- - -	- - -	- - -	- - -	1.14 1.04 0.94	0.93 0.84 0.76	0.84 0.76 0.7	0.77 0.69 0.64	0.6 0.55 0.5	0.55 0.49 0.46	0.49 0.45 -	- - -	- - -	- - -
710 560	-	-	-	-	- -	- -	- -	-	- -	- -	0.87 0.8	0.7 0.64	0.63	0.58	0.45	0.41	-	-	-	-
450	-	-	-	-	Size	-	-	-	-	-	-	-	-	-	0.38	- 63, 64	- 	-	-	-
1 400	1.72	1.4	1.29	1.18	0.92	0.84	0.76	0.68	-	-	2.73	2.34	1.97	1.81	1.67	1.3	1.17	1.08	0.96	-
1 120 900	1.58 1.43	1.28 1.16	1.16	1.06	0.83 0.75	0.76 0.69	0.68	0.62	- -	- -	2.49 2.28	2.13 1.93	1.79 1.62	1.64 1.48	1.5 1.37	1.17	1.06	0.97 0.88	- -	-
710 560	1.31 1.2	1.05 0.96	0.96 0.88	0.88	0.69 0.63	0.63 0.58	0.57	-	- -	- -	2.07 1.9	1.75 1.61	1.46 1.34	1.34 1.23	1.24	0.96 0.88	0.87	-	-	-
450 355	1.1 1.01	0.89	0.82	0.75	0.58	0.54	- -	-	- -	-	1.76 1.62	1.48	1.24	1.14	-	0.82	-	-	-	-
280	-	-	-	-	0.5	-	-	-	-	-	1.51	1.27	1.06	-	-	-	-	-	-	-
4 400	4.15	2.50	2.04		Size			1 66	1 40	1.32		0.0	0.5	7.0		5.7	5.1			
1 400 1 120 900	3.82	3.59 3.28 2.99	3.04 2.76 2.51	2.82 2.54 2.31	2.58 2.34 2.11	2.1 1.82 1.65	1.83 1.65 1.49	1.66 1.5 1.36	1.49 1.35 1.23	-	- -	9.8 8.5 7.2	8.5 7.3 6.2	7.8 6.6 5.6	7.2 6.2 5.3	4.84 4.12	4.32	3.4	- - -	-
710	3.17	2.7	2.27	2.09	1.91	1.49	1.35	1.23	1.11	-	-	6.2	5.3	4.8	4.45	3.5	3.11	2.87	-	-
560 450	2.89 2.67	2.46 2.28	2.06 1.9	1.89 1.75	1.75 1.61	1.36 1.24	1.22 1.13	1.13 1.05	-	-	-	5.3 4.59	4.49 3.9	4.08 3.54	3.79	2.97 2.56	2.64 2.3	2.44	-	-
355 280	2.47 2.31	2.09 1.94	1.73	1.6 1.49	1.49	1.14 1.06	1.04 0.96	-	- -	-	-	4.02 3.55	3.41 3.01	3.09 2.76	2.89 2.57	2.24 1.99	2.01 1.79	-	-	-
224 180	2.11 1.98	1.8 1.69	1.5 1.4	-	-	0.99	-	-	-	-	-	3.18 2.88	2.69	2.44 2.21	- -	1.78 1.6	1.59	-	-	-
140 112	1.8	-	-	-	- -	- -	-	-	-	- -	-	2.00 2.52 2.25	2.42		- -	1.4	-	- -	- -	-
112				S	ize 1		6					2.20	1.0		ize 10	60, 16		_	_	
1 400	-	15.2	14	12.2	11.2	10.4	8	7.1	6.6	5.9	-	23.4	21.8	18.9	17.4	16.1	12.5	11.4	10.3	9.3
1 120 900	-	13.1 11.3	11.9	10.3 8.9	9.5 8.1	8.8 7.5	6.7 5.8	6 5.1	5.6 4.76	- -	-	20.2 17.4	18.9 16.1	16.3 13.9	14.9 12.7	13.8 11.8	10.8 9.1	9.7 8.3	8.7 7.5	7.8 6.7
710 560 450	- - -	9.6 8.3 7.2	8.7 7.4 6.4	7.5 6.4 5.6	6.9 5.8 5.1	6.4 5.4 4.7	4.89 4.17 3.6	4.36 3.7 3.21	4.03 3.44 2.99	- - -	- - -	15 12.8 11.1	13.8 11.8 10.2	11.8 10.1 8.7	10.8 9.2 8	10 8.5 7.4	7.7 6.6 5.7	7 6 5.1	6.3 5.4 4.67	5.7 4.82 4.17
355 280	- -	6.2 5.5	5.6 4.99	4.81	4.4 3.92	4.11 3.64	3.12	2.81	- -	- -	- -	9.6 8.5	8.8 7.8	7.5 6.7	6.9 6.1	6.4 5.6	4.81	4.44 3.94	4.05	3.65
224 180	-	4.91 4.42	4.46 3.98	3.81	3.49	3.24	2.48	2.23	-	-	-	7.6 6.9	7 6.3	5.9 5.4	5.4 4.86	5 4.49	3.86	3.51	3.23	-
140 112	-	3.9 3.48	3.51	3.01 2.68	2.75	-	1.97 1.75	-	- -	- -	-	6 5.4	5.5 4.92	4.63 4.16	4.26 3.81	-	3.02 2.71	2.78	2.32	-
904)	-	3.14	2.85	-	-	-	-	-	-	-	-	4.81	4.42	3.74	3.43	-	2.46	2.25	-	-
,			00.1	04.0	Size		46.1	4	46.5	44-				46.5		250	05.5	07.0	05.5	00.5
1 400 1 120	-	-	33.1	31.3	27 23.2	25.1	19.4	17.7	16.2	14.5	-	-	-	48.5	41.2 36	39.4	35.5	27.3	25.7	23.2
900 710	-	-	24.7	23.1	20 17	18.3 15.7	14.5 12.2	12.8 10.9	11.7 10	10.5 8.9	-	-	-	36.8 31.2	31 26.4	29.6 25	25.9 22.2	20.4 17.3	18.9 16	16.8 14.4
560 450	- -	-	18.2 15.8	17 14.7	14.5 12.6	13.4 11.6	10.4	9.3 8	8.5 7.3	7.6 6.5	-		- -	26.9 23.4	22.8 19.7	21.4 18.6	18.8 16.3	14.9 12.8	13.6 11.8	12.2 10.6
355 280	- -	-	13.7 12	12.7 11.2	10.8 9.5	10 8.8	7.7 6.8	6.9 6.1	6.3 5.6	5.7 -	-		-	20.2 17.7	17 14.9	15.9 14	14 12.3	11 9.6	10.1 8.9	9.1 8
224 180	- -	- -	10.7	10 9	8.5 7.6	7.8 7	6 5.4	5.4 4.85	5 4.52	- -	-	-	-	15.8 14.2	13.1 11.8	12.4 11.1	11 9.8	8.5 7.7	7.9 7.1	7.2 6.4
140 112	- - -	-	8.4 7.5	7.8 7.1	6.6 5.9	6.1 5.5	4.74 4.17	4.65	3.93	- -	-	-	- -	12.5	10.3	9.8	9.0	6.7 5.9	6.2	-
90 ⁴⁾			6.8	6.3	5.3	4.93	3.79	3.46						9.9	8.3	7.8		5.4	5	-

See notes at page 49.

Tab. 7.16.1c - Nominal thermal power $\textit{Pt}_{_{N}}$ of EP series

Gear reducer size		Train of gears Pt _N kW												
		EL	28			EL	4EL 2EB					В		В
	20 °C	40 °C	20 °C	40 °C	20 °C	40 °C	20 °C	40 °C	20 °C	40 °C	20 °C	40 °C	20 °C	40 °C
001A	11,8	9	8,5	6,3	6,3	4,75	5,6	4,25	9	6,7	7,1	5,3	6	4,5
002A	11,8	9	8,5	6,3	6,3	4,75	5,6	4,25	9,5	7,1	7,5	5,6	6,3	4,75
003A	17	12,5	11,2	8,5	8,5	6,3	7,5	5,6	12,5	9,5	9	6,7	7,5	5,6
004A	18	14	12,5	9,5	9	6,7	8	6	13,2	10	9,5	7,1	8	6
006A	18	14	12,5	9,5	9,5	7,1	8	6	13,2	10	10	7,5	8,5	6,3
009A	28	21,2	18	14	14	10,6	11,8	9	20	15	14	10,6	11,2	8,5
012A	28	21,2	20	15	14	10,6	11,8	9	21,2	16	15	11,2	11,8	9
015A	28	21,2	20	15	14	10,6	11,8	9	21,2	16	15	11,2	11,8	9
018A	40	30	23,6	18	17	13,2	15	11,2	26,5	20	17	13,2	14	10,6
021A	40	30	23,6	18	17	13,2	15	11,2	26,5	20	17	13,2	14	10,6
022A	-	-	26,5	20	18	14	16	11,8	26,5	20	17	13,2	14	10,6
030A	42,5	31,5	31,5	23,6	21,2	16	17	12,5	28	21,2	20	15	16	11,8
031A	45	33,5	35,5	26,5	25	19	20	15	33,5	25	22,4	17	18	14
042A	56	42,5	40	30	26,5	20	21,2	16	33,5	25	25	19	20	15
043A	56	42,5	42,5	31,5	30	22,4	22,4	17	33,5	25	25	19	20	15
060A	-	-	50	37,5	33,5	25	23,6	18	37,5	28	28	21,2	22,4	17
061A	-	-	50	37,5	33,5	25	26,6	18	50	37,5	36,5	26,5	28	21,2
085A	-	-	60	45	42,5	31,5	30	22,4	50	37,5	35,5	26,5	28	21,2
125A	-	-	71	53	50	37,5	35,5	26,5	56	42,5	42,5	31,5	33,5	25
180A	-	-	85	63	60	45	42,5	31,5	-	-	50	37,5	40	30
250A	-	-	100	75	75	56	50	37,5	-	-	67	50	50	37,5
355A	-	-	125	95	90	67	60	45	-	-	80	60	60	45
500A	-	-	160	118	106	80	71	53	-	-	-	-	71	53
710A	-	-	200	150	125	95	80	60	-	-	-	-	90	67

Values referred to $n_1 = n_{1 \text{ max}}$.

Tab. 7.16.2 - Thermal factor ft_1 (= ft_{1a} ft_{1b}) according to cooling system and input speed n_1

		-		1										
	Cooling system								ft_{1a}, f	t _{1b}				
						input speed n_1 [min ⁻¹] \geq								
						560	710	900	1120	1400	1800	2240	2800	3150
		A , E ,	train of gears V, I	2	1,8	1,6	1,4	1,25	1,12	1	0,71	0,5	0,355	0,3
		G, H, iFIT	train of gears IV,2I, CI,72	1,4	1,32	1,25	1,18	1,12	1,06	1	0,85	0,71	0,5	0,425
ft _{1a}	Natural series convection EP	tr. 2IV, 3I, 4I, ICI, C2I, C3I,73	1,18	1,12	1,12	1,06	1,06	1,03	1	0,95	0,85	0,6	0,5	
		EP	Horizontal mounting position (B)	2	1,8	1,6	1,4	1,25	1,12	1	0,71	0,56	0,4	0,355
	series		vertical mounting position ²⁾ (V)		1,4	1,25	1,12	1	0,9	0,8	0,56	0,45	0,355	0,28
ft _{1b}	Forced cooling 3)		1 radial fan (helical)	1	1	1,06	1,12	1,18	1,25	1,32	1,4	1,6	1,8	2
	4) 5)	G , H series	2 radial fans (helical)	1	1 06	1,12	1 25	1,4	1,6	1,8 ⁶⁾	2	2,24	2.5	20
			1 radial fan (bevel helical)	'	1,00	1,12	1,23	1,4	1,0	1,0		2,24	2,5	2,8
		EP series	1 radial fan	1	1	1	1,06	1,18	1,32	1,5	1,7	1,9	2,12	2,24
	with water coil								2					
	with internal exchanger (G)							S	ee ch	. 8.2	,			,

Notes of pages 62, 63.

For applications at these speed values, consult us.

[•] Position of the reference groove

¹⁾ For MR 2I, $\mathbf{f}_3 = 1$.

²⁾ Including B51, B52, B31, B32, B61, B62, B71, B72, B81, B82.

¹⁾ With simultaneous water cooling by ${f coil}$, values are multiplied by ${f 1,8}$.

⁴⁾ For positions, dimensions and design verification see ch. 17.

⁶⁾ With axial fan, values are to be multiplied by 1,12. Consult us. 6) Value also valid for electric fan (installed by the Buyer).

Tab. 7.16.3 - Thermal factor $\mathbf{ft}_{\scriptscriptstyle 2}$ according to $\mathbf{ambient}$ $\mathbf{temperature}$ and $\mathbf{service}$

Maximum ambient temperature °C	Continuous duty	Intermittent load duty S3 S6 Cyclic duration factor [%] for 60 min running 1)							
	S1	60	40	25	15				
60	0.6	0.71	0.8	1	0.95				
50	0.8	0.95	1.06	1.25	1.32				
40	1	1.18	1.32	1.5	1.7				
30	1.18	1.4	1.6	1.8	2				
20	1.32	1.6	1.8	2	2.24				
10	1.5	1.8	2	2.24	2.5				

Tab. 7.16.4 - Thermal factor $\mathbf{ft}_{\scriptscriptstyle{4}}$ according to altitude of installation

Altitude a.s.l.	$\mathbf{ft}_{_{4}}$
m	
0 ÷ 1 000	1
1000 ÷ 2 000	0.95
2000 ÷ 3 000	0.9
3000 ÷ 4 000	0.85

Tab. 7.16.5 - Thermal factor $\mathbf{ft}_{\scriptscriptstyle{5}}$ according to cooling \mathbf{air} speed on gear reducer housing

Air speed m/s	Installation environment	ft ₅
< 0.63	very small environment or without air movements or with protected gear reducer	consult us
0.63	small environment and with limited air movements	0.71
1	wide environment without air movements	0.9
1.25	wide environment with light air movements (e.g. gearmotor with self-cooled motor	1
2.5	open and colled	1.18
4	with heavy air movements	1.32

Tab. 7.16.6 - Thermal factor $\mathbf{f}\! t_{\text{ATEX}}$ according to ATEX gear reducer design

Series	2G, 2D	3G, 3D
A, E, G, H, iFIT, EP	0.8 (0,71 for train of gears I and CI) (0,63 for iFIT with Adapter)	0.9 (0,8 for train of gears I and CI) (0,63 for iFIT with Adapter)
	(0,6 for train of gears 2EB 6EB)	(0,6 for train of gears 2EB 6EB)

Duration of running on load [min] · 100 [%]

Tab. 7.16.7 - Thermal factor ${\it ft}_{_3}$ according to mounting position where ${\it ft}_{_3}$ = 1 is not specified

	A ser	ies	Size 32 250
R, MR	V	B6, B7	0,9

iFIT iC	Size	,
series	272 972	273 973
V5	0,8	0,9
V6	0,71	0,8

	_			Size				
	E seri	es		50 140	160, 180			
R MR	21	V5	<i>i</i> _N ≤ 10	1	0,85			
MR MR	21, 31	V6		0,	85			

iFIT iO	Size			
series	273 973			
B6, V5	0,9			
B7, B8, V6	0,8			

	_		Size								
	G se	ries	140	160	180	200	225	250	280	320, 321	360
RI	B6 B7 B8		1 0,85 0,85	0,71 0,85 1	0,71 0,85 0,85	0,71 0,85 1	0,71 0,85 0,85	0,71 0,85 1	0,71 0,85 0,85	0,71 0,85 1	0,71 0,85 0,85
	В6	$i_{\rm N} \le 14$ $i_{\rm N} \ge 16$	1 1	1 1	1 1	0,85 1	0,85 1	0,85 1	0,85 1	0,85 0,85	0,85 0,85
R 2I MR 2I	B7	$i_{N} \leq 14$ $i_{N} \geq 16$	1 1	0,71	0,71	0,71 1 0,71	0,71 1 0,71	0,71 0,71 0,71	0,71 0,71 0,71	0,71 0,71 0,71	0,71 0,71 0,71
	V5 V6	$i_{N} \leq 14$ $i_{N} \geq 16$ $i_{N} \leq 14$	1 1 1	1 1	1 1	1 1	1 1	1 1	1 1	0,71 0,71 0,85 ¹⁾	0,71 0,71 0,85 ¹⁾
R 31	B6 B7	$i_{N} \le 63$ $i_{N} \le 63$	1	1 1	1	1 0,71 1	1 0,71	0,85 0,71	0,85 0,71 1	0,85 0,71	0,85 0,71
MR 3i	V5 V6	$i_N^{"} \ge 71$ $i_N \le 63$ $i_N \le 63$	1 1 1	1 1	1 1	1 1	1 1	1 0,85	1 0,85	0,71 0,71 0,85	0,71 0,71 0,85
	B6 B7	$i_{\rm N} \le 8$	1 1	1 0,71	1 0,71	1 0,71	1 0,71	0,85 0,71	0,85 0,71	0,85 0,71	0,85 0,71
R CI	B8 V5, V6	 below i_N ≤ 8 above 	0,85 1 1	1 1 0,71	0,85 1 0,71	1 1 0,71	0,85 1 0,71	0,85 0,71	0,85 0,85 0,71	1 0,85 0,71	0,85 0,85 0,71
MR CI	B7 B8 V5, V6	• above	1 0,85 1	1 1 1	1 0,85 1	1 1 1	1 0,85 1	0,85 1 0,85	0,85 0,85 0,85		- - -
R C2I	B6 B7	<i>i</i> _N ≤ 28 • below	1 1 1	1 1 1	1 1 1	1 0,71 0,71	1 0,71 0,71	1 0,71 0,71	1 0,71 0,71	0,85 0,71 0,71	0,85 0,71 0,71
MR C2I	V5, V6 B7	• above	1	1	1	1	1	1	1	0,85 0,85	0,85 0,85

	G series (400, 401)		Size							
	J	H series	400, 401	4000, 4001	4500, 4501	5000, 5001	5600, 5601	6300, 6301	7101	8001
R 21	B6, V6		0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
R 3I R 4I	B7, V5		0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
	В6		_	0,85	0,85	-	-	-	-	_
R CI	B7		_	0,71	0,71	_	_	_	-	_
K CI	VE VC	low speed shaft below		0,85	0,85					
	V5, V6 upper low speed shaft		_	0,71	0,71	_	_	_	_	_
	В6		0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
R C2I	B7		0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
R C3I	\/F \/0	upper low speed shaft (C2I), below (C3I)	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
	V5, V6	low speed shaft below (C2I), upper (C3I)	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8

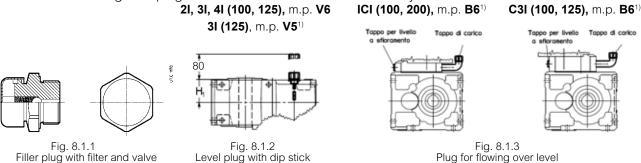
¹⁾ See notes at page 61.

8 - Lubrication

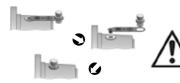
8.1 - General

Gear reducers and gearmotors must be lubricated with **polyglycol** or **polyalphaolephines based synthetic oil** depending on the series; they are supplied **FILLED WITH OIL OR WITHOUT OIL** according to type and size (see ch. 8.2). The gear pairs are oil-bath lubricated, the bearings are either oil bathed or splashed or lubricated «for life» with grease. For some mounting positions with continuous duty at high speed, an expansion tank is foreseen: consult us. **When supplying WITHOUT OIL, the filling up to specified level is Buyer's responsibility and has to be carried out with gear reducer at rest**; usually the level is stated by means of transparent level plug (see ch. 15 ... 20 or eventual SPT scheme attached to present instructions). Every gear reducer is equipped with **lubrication name plate**.

Concerning lubricant type, how supplied status of gear reducers, plugs, filling instructions, oil-change interval, etc. see table 8.2.



Make sure that for gear reducers and gearmotors size ≥ 100, the filler plug is metallic and equipped with filter and valve (symbol -); see fig. 8.1.1). When these gear reducers are required filled with oil (non-standard design) the filler plug is not mounted but supplied separately; the responsible for installation will take care of the right assembly (see ch. 15 ... 20 or eventual scheme SPT attached) replacing a closed plug.


When the gear reducer or gearmotor is supplied with **transparent level plug** (size \geq 100), the lubricant quantity to be filled is the one that allows **to reach the level** specified **by the proper transparent plug at gear reducer rest** and not the one stated on the catalog.

When gear reducer or gearmotor is provided with a **level plug with rod** (see fig. 8.1.2), fill with oil up to specified level on rod.

When gear reducer or gearmotor is provided with **a plug for flowing over level** (red colour, see fig. 8.1.3) fill after unscrewing a.m. plug in order to check the obtained level by oil outlet.

1) For high speed continuous duty an expansion tank is envisaged: consult us.

For EP gear reducers, the filler plug with breather is supplied disassembled, positioned closed to its seating. Before commissioning, after positioning the gear reducer in the mounting position stated in the name plate, replace the closed plug with the filler plug with breather (see fig. on the left).

For iFIT gear units, the filler plug with breather is supplied assembled in the correct position foreseen by the mounting position required; for mounting position BX it is supplied separately and is to be assembled in the specific mounting position required. **The breather plug is to be activated before commissioning after removing the proper tab** (see fig. 8.1.4).

Fig. 8.1.4

Usually bearings are automatically and continuously lubricated (bathed, splashed, through pipes or by a pump) utilising the main gear reducer lubricant. The same applies for backstop devices, when fitted to gear reducers.

In certain gear reducers in vertical mounting positions V1, V3, V5, V6, and bevel helical gear reducers in horizontal positions B3, B6, B51, B52 (though not gearmotors in this case, for which the above indications hold good) upper bearings are independently lubricated with a special grease «for life», assuming pollution-free surroundings. The same applies for motor bearings (except some cases in which relubrication device is adopted) and backstop devices when fitted to motors.

Always be sure that the gear reducer is located as per the mounting position ordered - including the inclined mounting positions (e.g. B3 38° V5), which appears on the name plate (see ch. 4.4). In case of **pivoted mounting positions** the gear reducers are equipped with an supplementary nameplate stating the mounting position, the oil filling and level check during maintenance operations.

For gear reducers of EP series, when n_2 output speed is lower than 0,3 min⁻¹, for all mounting positions refer to approx oil quantities stated for position V1. For mounting positions, oil quantity and plug position see ch. 19, 20.

8.2 - Lubrication tables

Table 8.2a - How supplied and plugs (identification through specific lubrication nameplate)

A series sizes ≤ 81	E, G series sizes ≤ 81 iFIT series all sizes	EP series sizes ≤ 021A	A series sizes ≥ 100	E, G, H series sizes ≥ 100	EP series sizes ≥ 022A		
	ED WITH SYNTHETI	1	WITHOUT OIL (except different statement on lubrication name plate)				
P	AG	PAO	(except different statement of lubrication flame plate)				
ISO VG 320	ISO VG 220	ISO VG 320	Before commissioning, fill to specified level with synthetic oil having the following ISO viscosity degree and features stated in table 8.2b				
with worm speed ≤ 280 min ⁻¹			Stated in table 5.25				
ISO VG 680	**						
	1 filler plug for size ≤ 64 2 filler/drain plugs for sizes 80, 81		Filler plug wit drain and		all filler/drain plugs *		

^{*} For mounting positions V3 for outputs Z, C, M, H the level plugs are for flowing over level, for remaining mounting positions sight level plugs.

Use only lubricants with EP (extreme pressure) additives.

Tab. 8.2b - Filling instructions

Before commissioning and at every oil change, fill to specified level with synthetic oil having the following ISO viscosity degree and features: Use only lubricants with EP (extreme pressure) additives, see tab. 8.2d.

The oil quantity is given by the level stated by the proper plug or an equivalent system (plug for flowing over level, plug with dipstick).

A series							E, G, H series			EP series		
Polyglycol based synthetic oil (PAG)					Polyalphaolephine based synthetic oil (PAO)							
CO vice seit versels [= 0t]			ISO viscosity g	ISO viscosity grade [cSt]		ISO viscosity g	ISO viscosity grade [cSt]					
ISO viscosity grade [cSt] Ambient temperature 0 ÷ 40 °C¹¹) Worm Gear reducer size		Speed n ₂	Ambient temperature		Speed n ₂	Ambient temperature						
speed min ⁻¹	100	_	161		250	min ⁻¹	-20 ÷ 0 °C ²⁾	0 ÷ 40 °C¹)	min ⁻¹	-10 ÷ 20 °C	10 ÷ 40 °C1	
		B3, V5, V6	B6, B7, B8	B3, V5, V6	B6, B7, B8	> 224 224 ÷ 22.4	150 150	150 220	> 224	150	220	
1 500 ÷ 710 ²⁾ 710 ÷ 355 ²⁾	320 460		20 60	320 460	220 320	22.4 ÷ 5.6	220	320	140 ÷ 2.0 < 2.0	220 320	320 460	
355 ÷ 180 ²⁾	680	680	460	40	60	< 5.6	320	460	Peaks of 20 °C be		bove the ambie	
< 180	680	68	30	68	30	Peaks of 20 °C bel		ove the ambient	temperature range	are acceptable.		
1) Peaks of 10 °C below (20 °C for ≤ 460 cSt) the ambient temperature range are acceptable. 2) For this speed we advise to replace oil after running-in.				temperature range 2) Temperature ran for H series.		out heaters, only						

Oil change intervals

Sizes ≤ 81 (A, E, G series) and ≤ 021A (EP series), and all sizes of iFIT series are **lubricated for life**, assuming external pollution-free environment. An overall guide to oil-change interval is given in the table, and assumes pollution-free surroundings. Where heavy overloads are present, halve the values. Apart from running hours replace or regenerate synthetic oil at least each 5 years.

Tab. 8.2d - Lubricants

Manufacturer	Synthetic oil PAO	Synthetic oil PAG
ADDINOL	Eco Gear S	Eco Gear M
AGIP	Blasia SX	Blasia S
ARAL	Degol PAS	Degol GS
BP	Enersyn EPX	Enersyn SG-XP
CASTROL	Alphasyn EP	Optiflex A
FUCHS	Renolin Unisys	Renolin PG
KLÜBER	Klübersynth GEM4	Klübersynth GH6
MOBIL	Mobil SHC Gear	Mobil Glygoyle
SHELL	Omala S4 GX / S4 GXV	Omala S4 WE
TEXACO	Pinnacle	Synlube CLP
TOTAL	Carter SH	Carter SY

Tab. 8.2e - Lubrication intervals

Oil temperature °C	Lubrication interval h				
	Α	E, G, H	iFIT	EP	
≤ 65 65 ÷ 80 80 ÷ 95	9 000 6 300 4 500	12 500 9 000 6 300	25 000 18 000 12 500	12 500 10 000 6 300	

^{**} For iC series, a filler plug with breather for size ≥ 37 (for size 27 only with mounting position V5 or V6).

Grease-lubricated bearings:

Lubrication is «**for life**» assuming uniform load and pollution-free environment. Replace the grease every year with running up to 12 h/d and every 6 months with running of 12 ÷ 24 h/d; in these occasions relubricate the **backstop device** with grease SHELL Alvania RL2. Bearing should be filled with SHELL Gadus S2 V100 bearing-grease for ball bearings, KLÜBER STABURAGS NBU 8 EP for roller bearings.

Attention! for bearings requiring greasing refero to ch. 15 ... 20 and consult Rossi in case of doubt.

Combined gear reducers. Lubrication remains independent, thus data relative to each single gear reducer hold good.

Output bearings for slewing drives (EP series Slewing drives)

In the case of slewing drives (output designs R-S-H), regardless of the mounting position, the output bearing has an independent grease lubrication.

The re-lubrication of the bearing has to be carried out at each oil change. For maintenance intervals and grease quantity, refer to relevant table 8.2e

It is recommended to re-lubricate bearings and seals with the same grease the gear reducer was supplied; as alternative, it is possible to use similar grease types.

ATTENTION: the re-lubrication procedure may cause a grease leakage from bearing seat to oil chamber. This does not affact gear reducer operation. However it is recommended to re-lubricate before replacing gear reducer oil, in order to remove any grease leaked into oil chamber. For grease quantities follow the data contained in table 19.1 on page 93.

8.3 - Lubrication of extruder support (helical and bevel helical, sizes 100 ... 4501)

The lubrication of extruder support, supplied **WITHOUT OIL** like the gear reducer, is oil bathed and can be joint or separate compared with the gear reducer's one.

Separate lubrication¹⁾

The gear reducer must be filled with lubricant with ISO viscosity degree stated in table 8.2b, whereas the **extruder support** – equipped with metallic plug with filter and valve, drain and level – must be filled with **polyalfaolefines basis synthetic oil** with viscosity degree ISO **320 cSt** (see tab. 8.2.d, AGIP Blasia SX, MOBIL SHC Gear, KLÜBER Klübersynth GEM4, ARAL Degol PAS, BP Enersyn EPX, SHELL Omala S4 WE; approx quantities see table 8.3.1) and up to level stated on **extruder support**.

Common/Joint lubrication²⁾

The **gear reducer** and the **support** must be filled with the same **polialfaolefines basis synthetic oil**, with iSO viscosity degree stated in table 8.2b and up to **level** stated on the **gear reducer**. For mounting position B6, during the filling, remove the upper plug positioned on the extruder support in order to facilitate the air flow from inside. In this circumstance, cause of the elimination of potential residual air, an oil filling up to level could be necessary before commissioning.

Table 8.3.1

Gear red. size	Approximate oil quantity extruder support		
140, 160	0.8		
180	1.1		
200	1.5		
225	2.5		
250, 280	4		
320 360	9.1		
4000, 4001	20		
4500, 4501	16		

1) The inner part of gear reducer is separated from the extruder support through a seal ring.

²⁾ The inner part of gear reducer is connected with the extruder support; the common lubrication is present on gear reducer and gearmotors 2l sizes 100 ... 360 or in presence of independent cooling unit when it is used both for gear reducer and extruder support.

9 - Motor assembly and disassembly

9.1 - General

Attention. Verify that motor:

- respects the application limits (P_{1max}, n_{1max}, etc.) stated on nameplate of gear reducer on which it is mounted (gearmotor without motor),
- it has ATEX protection specifications equal to or higher than the gear reducer ones on which it is mounted (gearmotor without motor)
- it is complying with the minimum safety requirements of the use area (see table 7.1).

As all gearmotors (excluding iFIT series gearmotors) are fitted with **standardized** motor, the mounting or replacement of motor is user-friendly. Simply observe the following instructions (after having observed the safety instructions relevant to machine, see maintenance procedure of ch. 13.1:

- be sure that the matin surfaces are machined under accuracy rating (IEC 60072-1);
- clean surfaces to be fitted, thoroughly. If painted, remove paint;
- in the event of a lowered keyway, replace the motor key with the one supplied with the gear reducer; if necessary, check the key so that between its top and the bottom of the hole keyway there is a backlash of 0,1 0,2 mm; iin case of output shaft keyway, lock the key by pins;
- check that motor centering is in the relevant gear reducer flange seat;
- check that the length of the fastening screws from motor to flange is enough to have 2 × pitch over the nut;
- consider the tightening torque stated at ch. 7.4:

9.2 - Gearmotors with motor keyed onto hollow high speed shaft of gear reducer

Worm gearmotors MR V (A series)
Helical gearmotors MR 2I, MR 3I sizes 40 ... 360 (G series)
Bevel gearmotors MR CI, MR C2I (G series)

- check that the fit-tolerance (push-fit) between hole and shaft end is G7/j6 for D < 28 mm, F7/k6 for D ≥ 38 mm;
- apply a thread-braking seal type LOXEAL 23-18 the coupling surfaces to prevent contact oxydation;

- push the motor up to shoulder; do not force the motor shaft inside the gear reducer: danger of severe injury;
- tighten the motor fastening screws or nuts to gear reducer motor flange;

In presence of **hub clamp** (helical gearmotors 2I, 3I with motor size \geq 200) proceed as follows, for the **mounting**:

- Turn the hub clamp until the fastening screw head is aligned with one of the access holes on gear reducers flange, after having removed the relevant closure plugs;
- do not modify the axial position of the hub clamp supplied from workshop, as this position is the excellent one in order to achieve the maximum tightening effect;
- push the motor up to shoulder;
- tighten the motor fastening screws or nuts to gear reducer motor flange;
- tighten the hub clamp by dynamometric key up to the tightening torque specified in tab. 9.2.1; during this operation pay attention not to modify the axial position of hub clamp;
- screw again the closure plugs of access holes to gear reducer flange;

For the **disassembly**, proceed as follows:

Gear red	ucer size	Screw	<i>M</i> s
21	31	UNI 5931	Nm
160 225	200 280	M12 × 45 cl. 12.9	143
250 360	320 360	M12 × 45 cl. 12.9 Ød ≤ 75 M14 × 50 cl. 8.8 Ød = 80	143 135

Tab. 9.2.1 - Tightening torque for hub clamp

- acting on motor shaft rear end, whenever possible, or disconnecting the gear reducer from machine and acting on gear reducer low speed shaft (with brake motor the brake must be released), align the wrench hole with the tightening screw of hub clamp;
- loosen the tightening screw and consequently the hub clamp (taking care not to modify the axial position of hub clamp);
- unscrew the motor fastening screws of nuts to gear reducer flange;
- disassemble the motor.

9.3 - Gearmotors with helical pinion keyed directly on motor shaft end

Worm gearmotors MR IV, MR 2IV (A series)
Coaxial gearmotors MR 2I, MR 3I (E series)
Helical gearmotors MR 3I 40 ... 125, MR 4I (G series)
Bevel helical gearmotors MR ICI, MR C3I (G series)

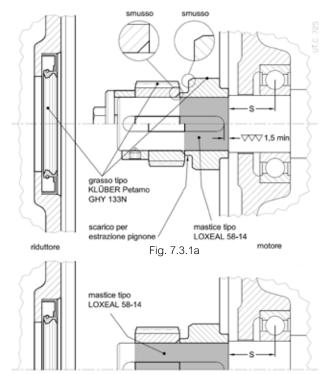
- check that the fit-tolerance between hole and shaft end is K6/j6 for D ≤ 28 mm, J6/k6 for D ≥ 38 mm;
- make sure that the motors have bearing location and overhang (dimension S see fig. 7.3.1) as shown in table 7.3.1;
- assemble on motor shaft, as follows:
 - a) the **spacer** pre-heated at **65 °C** sealing the motor shaft part with **locking adhesive type LOXEAL 58-14** and ensuring that keyway and motor shaft shoulder there is a ground helical section of at least 1,5 mm; pay attention **not to damage the external surface** of spacer;
 - b) the **key** in the keyway, taking care that a brief segment of at least 0,9 times the pinion width;
 - c) the pinion pre-heated at 80 ÷ 100 °C;
 - d) the **axial fastening system** where foreseen (head self-locking screw with base, spacer, or hub clamp with one or more dowels, fig. 7.3.1A); for the cases foreseen **without axial fastening** (fig. 7.3.1b), seal with **locking adhesive type LOXEAL 58-14** also the motor shaft section below the **pinion**;
- in the event of axial fastening system with hub clamp and dowels, be sure that these ones do not overhang from spacer external surface: screw the dowel and matrix the motor shaft with a tip;
- grease the pinion teeth, the sealing ring rotary seat and the seal ring (with KLÜBER Petamo GHY 133N), and assemble carefully, paying attention not to damage the seal ring lip due to accidental shock with the pinion toothing.

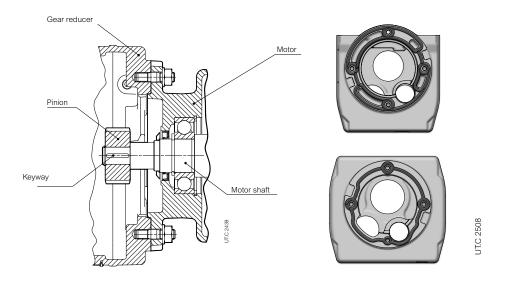
Tab. 9.3.1 - Minimum mechanical requirements for IEC motors

	Min dynamic	Max dimension S ¹⁾	
Motor size		N	mm
	Drive end	Non-drive end	
63 71	4 500 6 300	3 350 4 750	16 18
80	9 000	6 700	20
90 100 112	13 200 20 000 25 000	10 000 15 000 19 000	22.5 25 28
132 160 180	35 500 47 500 63 000	26 500 33 500 45 000	33.5 37.5 40
200 225 250	80 000 100 000 125 000	56 000 71 000 90 000	45 47.5 53
280	160 000	112 000	56

Values advised in order to minimize sound levels. These values refer to the maximum power of motor size; proportionally they increase when the applied power decreases.

They can double accepting higher sound levels ($3 \div 5 \text{ dB}(A)$). These values do not affect the gearmotor compliance with ATEX directive.




Fig. 7.3.1b

9.4 - Gearmotors with iFIT compact motor (cylindrical pinion keyed directly on compact motor shaft end)

Helical inline gearmotors iC, bevel helical iO gearmotors (iFIT series)

Make the following assemblies on the motor shaft:

- 1) assemble the key provided in the proper keyway;
- 2) sprinkle the motor shaft end with adhesive (e.g. LOXEAL 23-18);
- 3) key the pinion preheated at approx. 100 °C onto the motor shaft sull'albero motore il pignone preriscaldato a circa 100 °C taking care not to beat the motor shaft with the mallet or other tools;
- 4) check that the circlip is in its seat;
- 5) Mount the motor on the gearbox by applying a thin, continuous bead of LOXEAL 58-14 sealant in the flange union planes and on the gearbox housing, contouring the motor mounting studs and staying in the center position of the machined surface, away from the bearing seats as much as possible (see figure below)

9.5 - IEC or NEMA motor mounting on the adapter

Check mating dimensions according to IEC 72-1 standards, and make sure contact surfaces are machined to precise class (IEC 60072-1, UNEL 13501-69; DIN 42955)-for NEMA standards refer to NEMA C-FACE diagram.

To mount the motor on the adapter, proceed as follows:

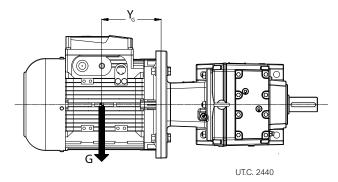
- Thoroughly clean the mating surfaces (motor shaft, motor flange surface and adapter);
- Check and, if necessary, lower the key to obtain a clearance of 0.1 ÷ 0.2 mm between the top and bottom of the borehole slot. If shaft keyway is without shoulder, lock the key with a pin.
- Lubricate the mating surfaces against contact oxidation (Klüberpaste 46 MR 401 is recommended);
- Insert the motor into the adapter.

Do not force the motor shaft into the adapter coupling. Danger of serious damage.

• Tighten the provided fastening screws of the motor to the adapter flange until a tightening torque is obtained as shown in the table below:

Tab. 9.5.1 Tightening torque of motor adapter fixing screws

Worm Ød	Tightening torque M_s IEC motors N m			
	cl. 8.8			
M8	25			
M10	50			
M12	85			
M16	205			


Worm Ød	Tightening torque M _s NEMA Motors			
[in]	ft lb	N m		
3/8" - 16	32,9	44,6		
1/2" - 13	80,3	109		
5/8" - 11	157	213		

To prevent harmful infiltration of moisture or dirt (e.g., dust) inside the adapter, it is advisable to isolate any discontinuities or openings in the mating surfaces between the motor and adapter flange by applying a continuous bead of sealant (e.g., LOXEAL 58-14).

Before assembling the motor, check that the static bending moment \mathbf{M}_{b} generated by the weight of the motor on the adapter counter flange is less than the allowable value ${\rm M}_{\rm bmax}$, shown in Table 7.4.2:

$$M_b < M_{bmax}$$

 $M_h < M_{bmax}$

where:

$$M_b = (G - Y_G) / 1000 [N m]$$

G [N] motor weight, numerically approximately equal to the mass of the motor, in kg, multiplied by 10.

 $Y_{_{\rm G}}$ [mm] distance of the center of gravity of the motor from the flange surface

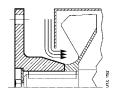
Motors that are too long and slender, even where the bending moment is less than the prescribed table limits, may generate abnormal vibrations during operation.

In such cases, suitable additional motor support must be provided (see. specific motor documentation).

Loads higher than permissible loads may be present in dynamical applications where the gearmotor is subjected to translations, rotations, or oscillations: consult us for the study of every specific case.

Tab. 9.5.2a Maximum bending moment M_{bmax} related to IEC motor adapter

IEC Adamtes Code	Maximur	n bending mor	nent M	l _{bmax} [N	m]
IEC Adapter Code		iC 47 iC 67 iO 47 iO 67			
AB12BI063, AB12BI071, AB16BI063, AB16BI07, AB20BI063, AB20BI071		55			
AB12Cl080, AB12Dl090, AB16Cl080, AB16Dl090, AB20Cl080, AB20Dl090 AB25Cl080, AB25Dl090, AB30Cl080, AB30Dl090	90				
AB12EI0100, AB16EI0100, AB16FI0112, AB20EI0100, AB20FI0112 AB25EI0100,AB25FI0112, AB30EI0100, AB30FI0112	200				
AB16GI13S, AB20GI13S, AB25GI13S, AB30GI13S		290		870	
AB20HI13L, AB25HI13L, AB30HI13L				070	
AB20HI160, AB25HI160, AB30HI160			935	11	55
AB25LI180, AB30LI180			ออ		
AB30MI200					1645


Tab. 9.5.2b Maximum bending moment M_{bmax} related to NEMA motor adapter

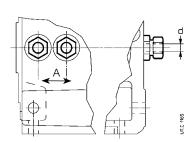
NITMA Adoutes Code	Maximum bending moment $M_{\scriptscriptstyle bmax}$ [N m]							
NEMA Adapter Code		iC 47 iC 67 iO 47 iO 67						
AB12BN056, AB16BN056, AB20BN056								
AB12CN143, AB12DN145, AB16CN143, AB16DN145, AB20CN143 AB20DN145, AB25CN143, AB25DN145, AB30CN143, AB30DN145	72	0.40						
AB12EN182, AB16EN182, AB16FN184, AB20EN182, AB20FN184, AB25EN182, AB25FN184, AB30EN182, AB30FN184	161	246						
AB16GN213, AB20GN213, AB25GN213, AB30GN213		251		656				
AB20HN254, AB25HN254, AB30HN254	740 1003							
AB25LN284, AB30LN284								
AB30MN324					1430			

10 - Cooling systems

10.1 - Fan cooling

If there is fan on the gear reducer verify that there is sufficient space allowing for adequate circulation of cooling air also after fitting coupling protection . If a coupling protection is fitted (drilled case or wire netting), smooth, the coupling hub, if necessary.

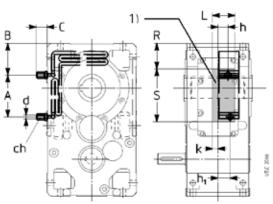
10.2 - Integrated fan cooling unit (EP series)



Tab. 10.2.1

1EL	2EL	3EL	4EL	2EB	3EB	3EB 4EB		$\mathbf{V}_{\mathrm{min}}$	\mathbf{Z}_{\min}	Code
							Ø	Ø		
001A, 002A 003A 006A 009A 015A		030A 060A	085A 180A	009A 015A , 022A	001A 022A 030A 043A 060A 085A		70 85 110	195 230 280	27 30 35	V38×58 V48×82 V60×105

10.3 - Cooling by coil (G, H series) or with internal exchanger (G series)


The presence of coil or internal exchanger is given by water **inlets** (pipes DIN 2353) protruding from the housing or from the inspection cover as shown in the following figures.

Tab. 10.3.1 - Coil

Gear reducer size	d Ø	A ¹) ≈	B ¹) ≈	h ¹) ≈	O ¹) ≈	spanner
125 180 200 280 320 360	12 12 16	40 50 60	40 40 45	- - -	- - -	22 22 30
400, 401 4000 4501 5000 5601 6300, 6301	16 16 16 16	140 180 225 280	45 - - -	255 250 310 320	472 577 647	30 30 30

¹⁾ Values valid and referred to mounting position B3; consult us.

Tab. 10.3.2 - Internal heat exchanger

	Gear red. size		ft _{1b}		A	В	С	ch	d	h	h ₁	K	L	R	s
İ		В3	B6, B7	В8	≈	≈			Ø						
	140 160 180	1,7 2,12 2	1,9 2,36 2,24	1,8 2,24 2,12	30 0 0	81,5 102 102	54 54 54	22 22 22	12 12 12	32 20 21	19 46 47	16 16 15	68 86 86	60 77 77	130 177 177
	200 225 250	2,24 2,12 2,36	2,5 2,36 2,65	2,36 2,12 2,5	190 190 180,5	152 152 170,5	25 25 25	22 22 22	12 12 12	41 41 50,5	41 41 50,5	14 14 18	75 75 100	105 105 125	263 263 311
	280 320, 321 360	2,24 2,12 2	2,5 2,36 2,24	2,36 2,24 2,12	180,5 60 60	170,5 255 255	34 34	22 30 30	12 16 16	54 66 66	54 66 66	15 2 2	100 129 129	125 177 177	311 302 302
	400, 401	2	2,24	2,12	2)	2)	34	30	16	2)	2)	2)	2)	2)	2)

- 1) Free area for pipe fastening and coil fastening devices.
- 2) Consult us.

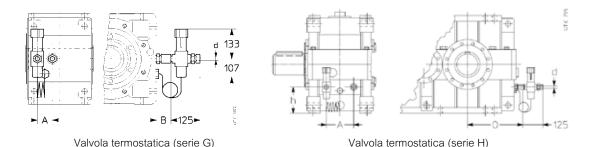
Attention! Do not tamper with the eventual stop plate in order to keep the pipes locked; in particular keep the pipe locked while tightening the nut of connection pipe.

Unless specific indications given on the documentation attached to present instructions, water fed into the system must:

- be not too hard ≤ 12 °F (French degrees);
- be at max temperature +20 °C;
- capacity 10 ÷ 20 dm³/min;
- pressure 0,2 ÷ 0,4 MPa (2 ÷ 4 bar); the load loss of coil according to water capacity and pressure is 0,6
 ÷ 0,8 bar for diameter d = 16 and 0,8
 ÷ 1 for diameter d = 12.

Where ambient temperature may be less than 0 °C, make provision for water drain and compressed air inlet, so as to be able to empty out the coil completely and avoid freezing up (see ch. 13.3).

The direction of flow of the cooling water is discretionary.



The user must install a flow indicator or other device on the water delivery to ensure the gear reducer/ gearmotor stops when the flow drops below the required rate; if the delivery water pressure is too high or there is a risk of this occurring, install a safety valve properly set.

The instruments must be according to ATEX depending on the area of application and installed as close as possible to the gear reducer/ gearmotor.

The ends of the cooling coil protruding from the gear reducer must not be damaged (bent, dented, obstructed) as this can prejudice the correct flow of water for cooling or result in leaks. Before connecting the coil to the pipe fittings used for feeding and draining of the cooling water, first rinse to clear out any possible obstructions.

For the connection it is sufficient to use a smooth metallic tube having a **d** external diameter as per table.

The **thermostatic valve** permits to have water circulation automatically and without auxiliary supply need, when gear reducer oil reaches the set temperature. The valve sensor is equipped with immerson bulb. Mounting and setting, adjustable within $+50 \div +90$ °C, must be mounted during the assembly. For the setting use the control knob on valve head.

For ambient temperature lower than 0 °C consult us.

Setting values advised for operating temperature: +50 ÷ +65 °C.

Attention! Be sure that all operations foreseen for the installation have been executed, by using tables 14.1 and 14.2. It is necessary to protect the thermostatic valve from any shock or stroke.

10.4 - Integrated water cooling unit (EP series)

Ensure that all connections are free of leaks.

Tab. 10.4.1

1EL	2EL	3EL	4EL	2EB	3EB	4EB	d Ø	Code
001A 002A	001A 006A	001A 022A	001A 061A	001A 006A	001A 022A	001A 061A	G1/4"	RS1a
003A 006A	009A 022A	030A 061A	085A 180A	009A 015A , 022	030A 043A	085A 125A	G1/4"	RS1b
009A 015A	030A 043A	085A 125A	250A 355A	018A 021A , 030A	061A 085A	180A 250A	G1/4"	RS1c

11 - Accessories

IMPORTANT. Rossi has the right to supply interchangeable probes such as functional technical specifications and connections, but with slightly modified case dimensions.

The probes (temperature probe, level probe) are an integrating part of safety system and must be connected to control devices of category to ISO 13849-1.

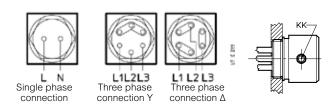
Control devices must work independently from electric power devices, needed for the operation. Follow the "fail+safe principle" for above mentioned devices.

Control device and/or connection logics must be realized with a locking system avoiding the accidental restart of operation, in case of stop.

IMPORTANT: Accessories that are supplied unassembled for transportation reasons must be installed on the gearbox before it is put into service by means of the threaded holes appropriately provided and indicated in the technical documentation accompanying the product. Tighten to the tightening torque indicated in Section 7.4 and use threadlocking adhesives type LOXEAL 23-18.

11.1 - Heater

Oil heater for starting the gear reducer at low temperature, **design ATEX II 2G EExd IIC T4**. When the gear reducer is supplied in 2G and 2D design is equipped with ATEX oil temperature probe as standard (see ch. 11.2) for piloting of the heater and the check of gear reducer; for gear reducer design 3GD the oil temperature probe is Buyer's responsibility.

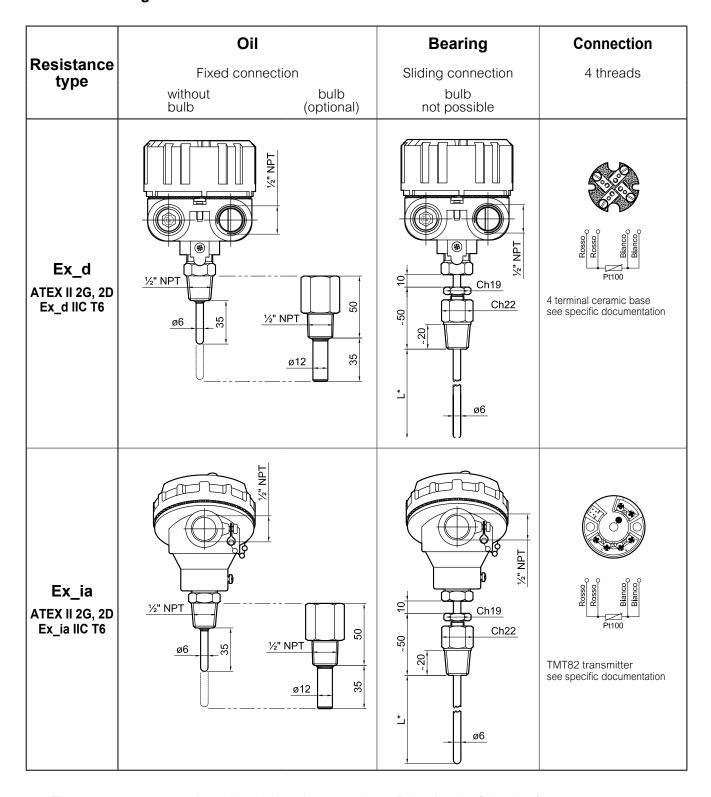

The heater is piloted through proper control device releasing when achieving the pre-set oil temperature.

IMPORTANT. The data stated in the table refer to **mounting positions B3** and **B8**; for other mounting positions, consult us.

Features:

- specific power 2W/cm²;
- single-phase supply 230 V 50-60 Hz or three-phase Δ 230 Y 400 V 50-60 Hz (see table 11.1.1);
- metallic terminal box; cable gland protection IP 65;
- Horizontal mounting with oil bath lubrication;
- thermal safety sensor with manual reset.

Set the operating threshold of heater at 50 °C and the reset threshold at 30 °C. In case of running at T_{amb} < 0 °C, consult us.



Tab. 11.1.1 - Heaters for standard configuration.

The values may differ, according to the application; refer always to the specific documentation attached.

Gear reducer size	F	<i>M</i> _s N m ≈	P W	KK	Supply
125, 140	G 1"	118	200	Pg 11	1~ 230 V 50-60 Hz
160, 180	G 1" 1/4	180	400	_	
200, 225	G 1" 1/2	224	600	Pg 13,5	3~ Δ 230 Y 400 V 50-60 Hz
250, 280	G 2"	300	1000		
320 360			1400		
400, 401	G 2" 1/2	375	2100		
4000 4501			n.2 × 1500		
5000 5601			n.2 × 3000		
6300 6301			n.2 × 3500		
7101			n.2 × 7500		
8001			n.2 × 9000		

11.2 - Oil or bearing resistance thermometers

The temperature gauge is realized with a thermo-resistor Pt100 having following features:

- platinum wire with 100 $\,\Omega$ at 0 $^{\circ}$ C according to EN 60751;
- single element;
- 4 wire connection according to IEC 751;
- precision class A according to CEI EN 60751;
- alluminium body supplied without cable gland; cover screwed with pin chain and earth screw; IP66;
- range of measurement -40 °C < T < +160 °C
- functional safety SIL 2

For the electric specifications and the connection schemes refer to the specific instructions attached.

Installation and maintenance

Fit the coupling with sliding probe into the appropriate threaded hole of the gear reducer (for the position refer to SPT scheme attached to present operating instructions) by using a spanner key 24, loosen the hexagon using a 19 mm spanner and slide the probe of the thermometer in (up to the point of contact when the temperature of a bearing is to be measured) so that the head of the thermometer is closer to gear reducer.

The electrical connections must be made with copper shielded "twisted" wires separated from power cables. Internal and external earth connection to be made.

The body of the thermometer must be protected against all risks of damage.

Connect the sensor to a temperature control device with 2 operating threshold or similar device.

Periodically verify that:

- there is no erosion/corrosion of the gaiter
- the whole equipment is working efficiently by inserting into the circuit a resistance of a known value and simulating a known temperature.

Attention! Assemble and disassemble the sensor with gear reducer without oil.

Setting

2 operating thresholds are foreseen:

- Alarm: anormal temperature increase; consult the table 14.1 and identify the possible over-heating causes; when no operation is possible, start the procedure of machine block.
- Block: achieving the maximum temperature allowed; start immediately the procedures of machine block, exclude the gearmotor from supply; consult table 14.1 and execute the controls of table 14.3.

Unless otherwise stated in the eventual supplementary documentation attached to present operating instructions, proceed as follows:

Setting of oil temperature probe

At the end of commissioning (see ch. 12) when gear reducers or gearmotors reach a steady thermal condition measure the oil temperature T_{oil} and ambient temperature T_{amb} and set the operating temperature (alert) of the device connected with the oil probe at the lowest temperature between the following two:

$$m{T}_{\text{calculation}} = m{T}_{\text{oil} [^{\circ}\text{C}]} - m{T}_{\text{amb} [^{\circ}\text{C}]} + m{45}$$
 [$^{\circ}\text{C}$] $- m{T}_{\text{alert}} = m{85}$ [$^{\circ}\text{C}$]

The **machine block** temperature cannot exceed $T_{\text{stop}} = 100 \, [^{\circ}\text{C}]$.

Setting of bearing temperature probe

Set the operating temperature (alert and block) of the device connected to bearing probe as follows:

- $T_{\text{alert}} = 100$ $T_{\text{stop}} = 110$

11.3 - Oil thermostat

Thermostat TRI120

© II 2 D Ex d IIB T85 °C IP65

It is a thermostat for oil with following features:

- Internal temperature regulator, manually set by operator
- Body: aluminium alloy
- Liquid dilatation probe in cylindrical sump made of tropicalized brass
- Cable entry Ø 3/4" UNI 6125 (ISO 7/1) Setting range 0÷120 °C
- Maximum bulb temperature 150 °C
- Differential XT = 3 K
- Maximum current: 10 A
- Maximum voltage: 400 V (a.c.)/250 V (d.c.)
- SPDT contact
- Functional safety SIL2

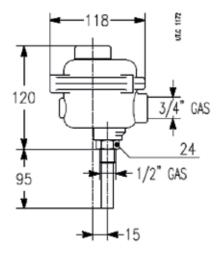


Fig. 11.3.1

Thermostat B121-120

ⓑ II 2 G Ex d IIC T6 IP65

It is a thermostat for oil with following features:

- Incremental (5 K steps) internal temperature regulator, manually set by operator
- Body: aluminium alloy
- Liquid dilatation probe in cylindrical sump made of nickel-plated brass
- Cable entry Ø 3/4" NPT-F
- Thread Ø 3/4" NPT-M
- Setting range -18÷105 °C
- Maximum bulb temperature 135° C
- Current carrying capacity 15 A at 125/250 V (a.c.); 2 A at 30 V (d.c.)
- SPDT contact
- Functional safety SIL2

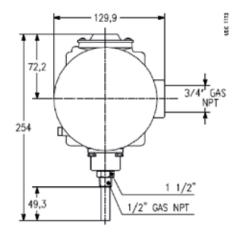


Fig. 11.3.2

TCA 2BA Thermostat

⑤ II 2 G Ex d IIC T6 IP65 ⑥ II 2 D Ex d IIC T85 °C IP65

It is a thermostat for oil with following features:

- Scale: the instrument is fitted as standard with an approximate scale of the set point indication;
- Body: alluminium alloy, copper and copper alloy free;
- Vapor tension sensor;
- Cable entry Ø 1/2"-14 NPT-F
- Cable entry Ø 1/2"-14 NPT-M;
- Setting range -40 ÷ +170 °C;
- Maximum bulb temperature +180° C
- Current carrying capacity 15 A at 220 V (a.c.); 2 A at 24 V (d.c.)
- SPDT contact.

Installation and maintenance

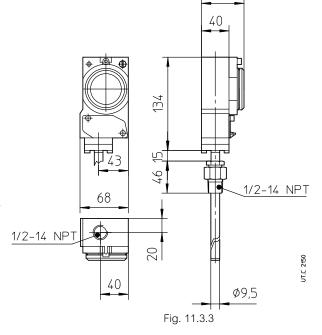
Assemble thermostat in the proper hole of gear reducer (see position indicated in the enclosed SPT sketch). Carry out electrical connections according to the current standards. Protect the body of the thermostat if there may be a risk of being damaged by foreign particles. The connection of the thermostat shall be made by cable entries or a stopping box of a flameproof type, certified EExd IIC (for B121-120) or EExd IIB (for TRI120).

The thermostat must not be altered or modified: if modification is necessary consult Rossi.

When the thermostat has an external and an internal grounding terminal, the internal grounding terminal shall be used as **primary** equipment grounding means whereas the external grounding terminal is only for a supplementary (secondary) grounding connection where local authorities permit or require such a connection.

Carry out periodical checks to verify that the whole equipment is efficient according to table 14.3. To prevent ignition of hazardous atmospheres, disconnect circuits before opening the thermostat.

Attention! Assemble and disassemble the sensor with gear reducer without oil.



Setting

The thermostat is to be set for a maximum threshold temperature of 85° C. If, after commissioning (when gear reducer or gearmotor reaches steady thermal conditions) the oil temperature *T*oil and ambient temperature Tamb can be measured, set the unit at the lower temperature between the following two:

$$\begin{array}{lll} - & \textit{\textit{T}}_{\text{calculation}} = \textit{\textit{T}}_{\text{oil}\, [^{\circ}\text{C}]} - \textit{\textit{T}}_{\text{amb}\, [^{\circ}\text{C}]} + \textbf{45} & \quad [^{\circ}\text{C}] \\ - & \textit{\textit{T}}_{\text{alert}} = \textbf{85} & \quad [^{\circ}\text{C}] \end{array}$$

The **machine block** temperature cannot exceed $T_{\text{stop}} = 100 \, [^{\circ}\text{C}]$.

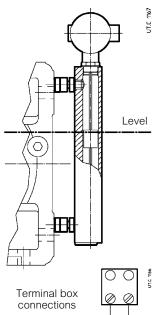
11.4 - Oil level switch with float

II 1 G Ex d IIC T6

It is a level control device with reed contacts in a supporting stem moved by the magnetic field activated by the magnets included in the float.

The float and the supporting stem are included in a hollow column of not magnetic material connected to the gear reducer casing through communicating vessels.

Features:


- 2 wires connection;
- Max voltage: 350 V
- Maximum current: 1.5 A
- 1 cable input 1/2" UNI6125 IP65
- G 1" brass joint.

Installation and maintenance

The accessories used for cable input and for covering unused holes must be certified according to EN 60079-0 and EN 60079-1 standards.

The level switch must be installed and maintained according to plant and maintenance standards for environments classified to explosion proof for the presence of gas (i.e.: EN 60079-14, EN 60079-17 or other national standards). The level switch box must be earth connected.

Only proper tools have to be used for installing and disassembling the level switches. Never use electrical connections for manual installation.

The level switch cables must be installed in mechanical protections such as conduit pipes with separating joints at the top and the end of the pipes. Minimum cable section has to be 0,22 mm². All active/passive safety barriers and connected devices (insulated amplifiers, relays) if any must be certified according to EN 60079-11 standards with [EEX ia] IIC protection and have to be installed in a safe area. The contacts are "REED" type and can carry up to ca. 100 000 000 operations during their life cycle. The switch power is relatively low (30-100 VA/W depending on application). For the safe use of the contacts it is recommended to drive inductive/capacitive power-loads through auxiliary relays or to use transient dampers/ Suppressors If used in accordance with its mechanical and electric specifications, this series of instruments does not need any specific maintenance. Check every 6 months the functionality of the level switch according to table 12.3. Protect the switch head if there may be a risk of hurts with foreign matters.

Setting

The switch is supplied ready for use; when level goes down approx 5 mm, the switch goes on and contact opens. When filling oil in the gear reducer it is necessary to verify that device is properly set. If any problems occur during this operation contact Rossi.

11.5 - Pressure switch with flameproof enclosure Ex d

II 2G Ex db IIC T4 Gb

II 2D Ex tb IIIC T135 Db IP66

ATTENTION: In presence of brake PB series and application of ATEX 2G, 2D and 3G, 3D, the pressure switch is always necessary as a safety device. The equipment on which the brake is installed can be operated only when the detection of a pressure value higher than the set one confirms that the brake is released.

General technical specifications:

- Flameproof enclosure: alluminium alloy, copper free, polyurethan paint
- 1x SPDT, single pole double throw hermetically sealed, argon gas filling
- Electrical rating (resistive load):

AC: 250 V, 15 A

DC: 24 V, 2 A, 220 V, 0,5 A

- Process connection: 1/4-18 NPT-female
- Electrical connection: 1/2-14 NPT-female
- Permissible ambient temperature range: 30°C ... +70°C
- Working pressure range: 0 350 bar
- Setting range: 20 220 bar (see note about pressure setting value)
- Protection degree: IP66
- SIL2 (Safety Integrity Level)

Pressure switch setting:

The pressure switch is supplied by Rossi already set to the nominal value, see below. This setting refers to the comprehensive range of PB brakes, however it is possible to obtain several setting values, if need be.

Nominal setting pressure value, rising pressure (operation pressure or set point) = 100 bar Actual Setting Pressure = from 98 to 102 bar Resetting pressure, failing = min 92 bar

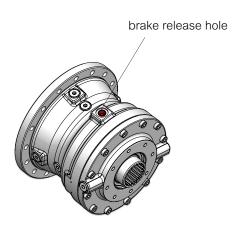
Electrical connection:

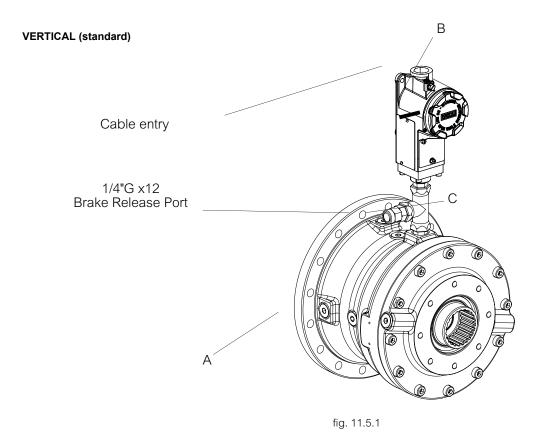
Follow the instructions stated in the installation and maintenance manual supplied by the manufacturer.

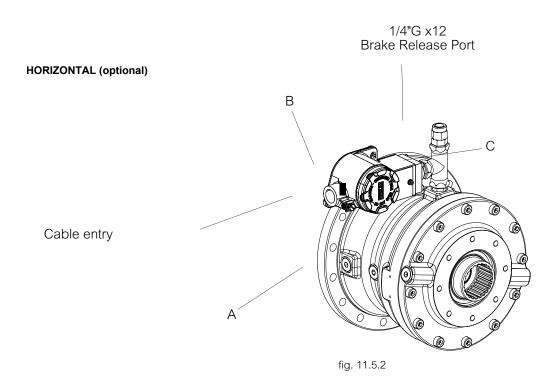
When commissioning the gear reducer

Check that pressure in brake supply circuit is suitable and sufficient to exceed the operating threshold (set pressure).

During the normal operation


If, during brake opening (gear reducer starting transient), a longer time should be necessary to achieve the operating pressure, it is allowed the running of brake for Max. 5 seconds assuming that supply pressure is higher than pressure of brake opening end ("p" pressure according to technical sheet).


Installation:

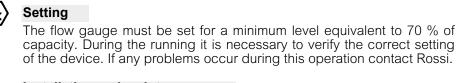

The pressure switch is supplied by Rossi and installed directly on a port of a T-connection fitted to the brake, the other port of the T-connection carries a 1/4" G thread for the brake release pipe.

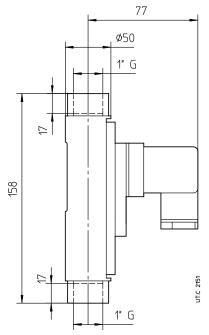
The standard configuration foresees the supply of the switch in VERTICAL position (see fig. 11.5.1), but in presence of application overall dimensions, it is possible to have an HORIZONTAL mounting (see fig. 11.5.2).

Pressure switch mounting position

- A. Brake of PB series
- B. Pressure switch.
- C. Connection KIT

11.6 - Flow gauge BFS-20


It's a capacity control device.


The measurement is executed through a piston movement equipped with loaded spring, free to flow inside a cylindrical pipe. The piston movement depends from device calibrating and from its minimum and maximum setup capacity. This device is equipped with viscosity compensation system.

Running features:

- Circuit voltage U = 28 V;
- Circuit current i = 50 mA;
- Supply 45 V 1 A;
- Electrical connection to DIN 43650;
- Maximum pressure P = 10 bar;
- Maximum temperature T = 120 °C;
- Viscosity compensation from 30 to 600 cSt;
- Capacity measurement range 2 90 l/min;
- IP 65 protection;
- Connection 3/4" G or 1" G.

$\langle \epsilon_{x} \rangle$

Installation and maintenance

The flow gauge must be installed and maintained according to installation and maintenance rules for environments classified against the risk of explosion for gas presence (example: EN 60079-14, EN 60079-17 etc.).

The instrument can be mounted in whatever position but in order to execute a careful measurement it is necessary to mount it in vertical direction and that the flow traverses it from the bottomo to the top.

ùThe oil must be pollution particles free, otherwise the instrument could not operate properly; install an oil filter or a magnetic filter, in order to avoid this problem.

The device must be installed far away from inductive or magnetic fields and at a minimum distance of the iron parts of 10 mm.

During the assembly of the device, avoid rotating the electrical connections inside the tabular hose in order to avoid any damage to the instrument.

Pre-arrange suitable protections against electrical overloads.

Adjust the switching point according to the measurement range so that the contact is open when the capacity achieves the minimum setup point.

The flow gauge, if used properly according to its mechanical and electrical features specified, does not need any careful maintenance, but it is recommended to do a specific check every 6 months in order to control the correct running as per table 14.3.

Protect the probe body from any external impact.

The probe body must be earth connected.

In any case, refer to the installation and maintenance instructions; consult us, if need be.

₹Rossi 81

12 - Commissionning

12.1 - General

Carry out a general check, making particularly sure that the gear reducer is filled with synthetic oil in the correct quantity (up to level), with the proper viscosity and one of the brands recommended in table 10.3, and that it is installed in the mounting position stated on nameplate.

If an external lubricating system is present (forced lubrication, cooling unit) oil is to be filled to the correct level with the external system full of oil.

Be sure that the **safety and control devices assembled on the gear reducer** and requiring electric power supply at user's care **are active and running**.

Be sure that the independent cooling units (with coil with internal heat exchanger and independen cooling unit) are working during the gear reducer running (see ch. 10.3).

Where Y- Δ starting is being used, input voltage must match the motor lower voltage (Δ connection).

For asynchronous three-phase motor, if the direction of rotation is not as desired, invert two phases at the terminals.

Before running gear reducers fitted with backstop device, make sure that the direction of rotation in machine, gear reducer and motor all correspond correctly. 7.14).

12.2 - Running-in

For the first commissioning, before starting with a normal running cycle, it is advisable to run the gear reducer without load in order to verify if it correctly runs.

In this circumstance, cause of the elimination of potential residual air, an oil filling up to level could be necessary.

During the first running hours, it is important to check:

- noise level;
- vibrations;
- sealings;

If you notice any malfunctions, please refer to ch. 14.

A **running-in** period with gear reducer running at 50% of rated torque is suggested as follows:

- of approx. 400 ÷ 1 600 h for gear reducers with worm gear pairs in order to reach maximum efficiency;
- of approx. 200 \div 400 h for gear reducers with bevel and/or cylindrical gear pairs in order to reach the best possible running conditions.

The temperature of both gear reducer and lubricant may well rise beyond normal values during running-in, but lower than the maximum value stated on name plate. After the running-in period it may be necessary to verify the gear reducer fixing bolt tightness.

During the first running hours it is possible to have a slight seepage of grease from the seal rings, which will not affect the good running.

Note. Note: worm gear reducer efficiency is lower in the **first running hours** (about 50) and at every cold starting (efficiency will be better with oil temperature increasing).

At first commissioning do all checks listed in table 14.2. The controls, for the devices of category 2, must be repeated after 24 hours and after one week.

Check that the unit is not faulty (broken bearings, keys, shafts, etc.) or shows signs of incipient malfunction (e.g. increased running noise/vibration, etc.).

12.3 - Measurement of surface temperature

Measure by a thermometer the surface temperature of gear reducer close to the high speed shaft (gear reducer) or at the coupling surface between motor and gear reducer (gearmotors) in the position which is most protected from air circulation.

When commissioning this temperature is to be kept under control and the max value is to be noted; the values are to be periodically checked (according to table 14.3) and compared with those which were previously noted in order to verify if there is any increase; if a significant increase ($> \approx 10\%$) occurs, something is not working properly and the machine must be stopped: consult Rossi.

Attention! Measure the difference in temperature (ΔT) compared to ambient temperature at the same operating conditions.

Note. Note: the max surface temperature is reached after approx **1÷4** h running on full load (the heating time is proportional to gear reducer size). The difference in temperature shall not exceed ambient temperature by more than **45° C**.

13 - Maintenance

Safety precautions

Maintenance on speed reducers and gearmotors series A, E, G, H, iC, EP, must be performed only by expert personnel, whose training has included all the necessary instructions on the equipment protection methods, on the installation methods, on the relevant laws and regulations and on the general principles of classification of places with danger of explosions (see IEC/EN 60079-17 "Explosive atmospheres – Part 17: verification and maintenance of electrical plants", in particular attachment B "knowledge, skills and competences of qualified personnel, technical personnel with executive functions and operational personnel").

Troubleshooting, diagnosis and repairs

The repair of gear reducers and gearmotors of A, E, G, H, iC, EP series must be executed only by skilled personnel.

For this purpose see standard IEC/EN 60079-19 "Explosive atmospheres – Part 19: repair, revision and resetting of tools", in particular attachment B "Knowledge, skills and competences of responsible and operational personnel".

Do all checks and verifications according to table 14.3.

The **replacement of seal rings**, the **oil change** and in general all operations not requiring any gear reducer opening and any replacement of transmission elements (e.g. shafts, gears, bearings, etc.) are considered **standard maintenance** operations. All these operations can be executed by **responsible qualified staff and** without any direct involvement of Rossi personnel. The spare parts (excluding lubricant) must be ordered at Rossi, by stating the gear reducer identification code stated on nameplate

Occasional maintenance such as replacement of gear pairs, bearings, etc. must only be done by **qualified Rossi technicians**. Therefore, the request of bearing, gear, shaft spare parts **may not be taken** in **consideration without any direct intervention of Rossi field service network**. As alternative the gear reducer will have to be sent back to Rossi for all necessary maintenance operations.

Rossi undertakes and grants no responsibility or guarantee for any damages and/or malfunctions arising from the use of non-original Rossi spare parts and/or accessories.

13.1 - General

Before starting any maintenance operations (disassembling, oil change, seal ring change, etc.):

- ensure there is no potential explosive atmosphere all around.
- disconnect the motor (including the auxiliary equipments) from the electrical supply, and the gear reducer from load;
- be sure that all safety systems have been activated against the accidental starting and if necessary, utilize mechanical locking devices (to be removed before commissioning);

Maintenance procedures to be adopted:

- LOTO (Lockout/Tagout): it is necessary to adopt the machine disconnection procedure (electrical and mechanical segregation)..
- HOT Works: hot fitting of components (ex. to the shaft end) can absolutely only be made in certified safe areas.

Do not weld anything to the reducer/gearmotor as this can damage gear pairs, bearings, oil seals. Do not use the housing to ground welding equipment.

Maintenance technicians must wear appropriate work apparel (antistatic clothing, gloves, etc.).

Stop the machine and isolate the power supply to ensure there will be no accidental starts in the following circumstances:

- a) when maintaining labyrinth seals and greaser;
- b) when maintaining bearings with separate lubrication of the backstop device;
- c) control of:
- cleaning of external surfaces and air passages of gear reducer or gearmotor;
- oil level;
- visible checks for oil deterioration (metal parts, water, sludge, etc.);
- correct tightening of fastening screws (feet, flange), shrink disc, hub clamp, if any (see 9.2) and of electrical bonding;
- cleanliness of filter and functionality of valve of filler plug;
- d) lubricant leak;
- e) critical threshold of eventual safety devices has been exceeded.

For gear reducers **with level plug or equivalent system** (plug for flowing over level, plug with dipstick) verify that oil level has not lowered.

For gear reducers without level plug, check for oil leaks (dripping, oil spots, etc.) with the machine running and at rest.

In case of lubricant leak, before commissioning again the gear reducer or gearmotor:

- collect the a.m. lubricant and dispose of it according to the law in force;
- identify the cause of leak (if necessary, consult Rossi).
- ripristinare il livello o la quantità richiesta.

In presence of dusty environment pre-arrange an adequate maintenance plan so that the thickness of dust laying on gear reducer or gearmotor surface is reduced to a minimum and never exceeding 5 mm.

For this operation use antistatic materials.

Be sure that the safety and control devices are effective.

Attention! After a running period, even if thermal range is not achieved, gear reducer is subject to a light internal overpressure which may cause burning liquid discharge. Therefore, before loosening whichever plug wait until gear reducer has become cold; if not possible, take the necessary protection measures against burning due to warm oil contact. In all cases, always proceed with great care.

Maximum oil temperatures indicated in lubrication table (see ch 8.2) do not represent a hindrance to the gear reducer regular running.

Qualora venga smontato il coperchio (per i riduttori che ne sono provvisti) o un cappellotto, ripristinare la tenuta con mastice dopo aver pulito e sgrassato accuratamente le superfici di accoppiamento. All bolts which may be damaged during assembling and disassembling operations are to be replaced with new ones having equivalent specifications and resistance class.

Occasional maintenance such as replacement of gear pairs, bearings, etc. must only be done by qualified Rossi technicians. We recommend to purchase spare parts and accessories from Rossi.

Rossi undertakes and grants no responsibility or guarantee for any damages and/or malfunctions arising from the use of non-original Rossi spare parts and/or accessories.

In case of long rest periods, the gear reducer must be committed for a shor time every 3 weeks; for rest periods longer than 6 months the gear reducer must be treated adequately for the conservation: consult Rossi.

13.2 - Oil change

Execute the oil change with machine at rest and cold gear reducer.

Pre-arrange a proper tank system for the drain oil, unscrew the drain plug and the filler plug to facilitate the drain; make sure that all oil has been drained, inclining the gear reducer of removing any residual parts with a suction pump; dispose the drain lubricant according to the laws in force.

- wash the inside part of gear reducer housing using the same oil type suitable for the running; the oil used for this wash can be applied for further washings after proper filtering by 25 µm of filtration standard;

Fill the gear reducer with oil again up to level.

The exact quantity gear reducer is to be filled with is definitely given by the level, excluding some iC series gear reduvers for which the level is to be determined through graduated rod (see ch. 18.1). For EP series gear reducers, when output speed n_2 is lower than 0,3 min⁻¹, for all mounting positions refer to approximative oil quantities stated for position V1.

During the oil change, replace the seal rings.

In this case, the new ring must be positioned so that it does not work on the same point of sliding contact as the previous ring;

When dismounting the cap (whenever gear reducers are provided with), reset the sealing with liquid adhesive LOXEAL 58-14 on cleaned and degreased mating surfaces, without interruption and contouring the holes (see fig. below); when finished, replace the cover, apply the screws, and tighten to the tightening torque indicated in Section 7.4.

For lubrication interval see table 8.2.

Indiependently from running hours: replace or regenerate synthetic oil at least each 5 ÷ 8 years, according to gear reducer size, running and environmental conditions.

Never mix different makes of synthetic oil; if oil-change involves switching to a type different from that used hitherto (see ch. 8), than give the gear reducer a through clean-out.

13.3 - Coil and internal heat exchanger

In case of long non-running periods at ambient temperatures lower than 0 °C, the coil should be emptied out using compressed air to blast out all the coolant, so as to avoid freezing-up which would cause the coil to break.

Verify that there are no deposits inside the coil which may obstruct water circulation or affect cooling. If any, wash the coil with suitable chemical cleaning products or consult Rossi.

Check the internal heat exchanger periodically and proceed with the cleaning of exchange surfaces taking care not to damage the finned surfaces.

UTD.123.2024-05.00_EN

13.4 - Seal rings

Seal rings duration depends on several factors such as dragging speed, temperature, ambient conditions, etc.; as a rough guide it can vary from 1 600 to 12 500 h; in any case replace them every 5 years.

In general, however, replace the seal rings in case of dismounting or of periodical check; in this case, during the assembly, you have to:

- lubricate the rotary seating of seal ring and the seal lip generously with grease (type KLÜBER Petamo GHY 133N);
- procede with mounting paying particular attention not to damage the seal lip due to accidental shocks or hurts or direct radiation deriving from eventual hot fitting of other components;
- position the seal lip **not in correspondence** of previous ring groove;
- position the seal ring in its seat on gear reducer housing using locking adhesive (type LOXEAL Istant 29); the application of locking adhesive is required even when replacing protection caps.

The new seal rings must be made of fluoro-rubber (Viton®).

In case of designs with labyrinth seal and greaser («Taconite»), re-grease at least every month.

In case of EP series, for sizes higher than 030A (excluding sizes 031A and 043A), refill the grease on output seals each 3000 operating hours or at least every 6 months.

13.5 - Bearings

Since there are many different types of bearings in a gear reducer (roller, tapered roller, straight roller, etc.) and each bearing works with different loads and speeds depending on the input speed, the nature of the load of the driven machine, the transmission ratio, etc., and with different lubricants (oil bath, oil splash, grease, oil circulation, etc.), it is not possible to define any periodical maintenance and replacement of bearings in advance.

It is therefore necessary to undertake periodical checks (according to table 14.3) to verify noise level and vibrations with the help of appropriate diagnostic equipment and instruments. If the measured values worsen even slightly it is necessary to stop gear reducer or gearmotor and after having inspected inside and consult Rossi, if need be.

If the failure of a bearing and the stopping of the machinery constitute a danger to people, execute a continuous monitoring of vibrations and noise level.

13.6 - Metal filler plug with filter and valve

For the cleaning of plug (see ch. 8.1) it is necessary to unscrew it from the gear reducer (preventing any debris or other foreign items from entering the reducer), disassemble the cover, wash it with solvent, dry with compressed air and reassemble it.

Do this operation at least once every 6 months: if the environment requires it, reduce the maintenance interval.

13.7 - Sound levels

Most of the Rossi product range is characterised by **sound pressure levels** LpA (mean value of measurement, assuming nominal load and input speed $n_1 = 1\,400\,\mathrm{min}^{-1}$, at 1 m from external profile of gear reducer standing in free field on a reflecting surface, according to draft proposal ISO/CD 8579) **lower or equal to 85 dB(A)**.

The table 11.8.1 shows the products which can exceed a.m. threshold. For further information about sound levels of every single product see Rossi technical catalogs.

Tab. 13.7.1 - Products that can exceed the threshold of 85 dB(A) of sound pressure levels.

			Helica	l gear un	Bevel helical gear units (G, H series)								
	R	R I	R	21	R	31	R	41	R	CI	R	C2I	R C3I
i _N Size	≤ 3.55 ≥ 160	≥ 4 ≥200	≤ 14 ≥ 250	≥ 16 ≥ 320	≤ 90 ≥ 320		!	≥ 200 ≥ 6300		≥ 400			all ≥ 6300

13.8 - Gear reducer troubles: causes and corrective actions

Trouble	Possible causes	Corrective actions
Excessive oil temperature	Inadequate lubrication:	Check:
	- excessive of insufficient oil quantity	- oil level (gear reducer at rest) or quantity (see ch. 15 20)
	 unsuitable lubricant (different type, too viscous, exhausted, etc.) 	- lubricant type and/or state (see table 8.3) and eventually replace it
	wrong mounting position	- change mounting position
	 too tightened taper roller bearings 	Consult Rossi
	Worm gear reducer with ex cessive load durino running -in	Reduce the load
	Excessive ambient temperature	Increase the cooling or correct the ambient temperature
	Obstructed passage of air	Eliminate obstructive material
	Slow or missing air recycle	Arrange auxiliary ventilation
	Radiance	Screen gear reducer and motor properly
	Inefficiency of auxiliary bearing lubrication system	Check the pump and the pipes
	Bearings failure, defect or bad lubrication	Consult Rossi
	Inefficient or out of service oil cooling system: obstructed filter, insufficient oil (exchanger) or water (coil) flow rate, pump out of service, water temperature > 20 °C	Check the pump, the pipes, the oil filter and safety devices efficiency (manostats, thermostats, etc.)
Anomalous noise	One or more teeth with	Consult Rossi
	 dents or spallings 	
	 excessive flanks roughness 	
	Bearings failure, defect or bad lubrication	Consult Rossi
	Taper roller bearings with excessive clearance	Consult Rossi
	Vibrations	Check the fastening and the bearings
Lubricant leaking from seal ring	Seal ring with worm, bakelized, damaged or false mounted seal lip	Replace seal ring (see ch. 13.4)
	Damaged raceway surface (scoring, rust, dent, etc.)	Restore the seating
	Mounting position differs from the one stated on the name plate	Correctly position the gear reducer (see ch. 15 20)
Oil leaking from filler plug	Too much oil	Check oil level or quantity (see ch. 15 20)
	Incorrect mounting position	Check mounting position (see ch. 15 20)
	Inefficient vent valve	Clean/replace filler plug with vent valve
Low speed shaft not rotating	Broken key	Consult Rossi
even with high speed shaft/ motor running	Completely worn gear pair	Consult Rossi
Lubricant leaking from joints (covers or half-casing joints)	Defective oil seals	Consult Rossi
Water in the oil	Defective cooling coil or heat exchanger	Consult Rossi

Motor: see specific instructions.

NOTE

When consulting Rossi state:

- all data on gear reducer or gearmotor name plate;
- failure nature and duration;
- when and under which conditions the failure occured;
- during the warranty period, in order not to loose validity, do not disassemble nor tamper the gear reducer or gearmotor without approval by Rossi.

14 - ATEX checks and verifications

Attention. Do all checks and verifications listed below, at first commissioning and during normal running. These checks are integrating parts of the device protection system and have to be carefully executed.

14.1 - Table of main installation checks and operations

Operation / Check	Reference
Has the consignment been damaged during shipping (dented shafts, strained oil seals, caps a/o plugs)?	5.1, 7.2
Has all packaging been removed?	5.4
Doe the nameplate data correspond to the order and fit the installation area?	4.4, 7.2
Beside the present operating instructions, is the eventual additional documentation available (SPT sketch, probes, thermostats, etc.)?	7.2
Is the mounting position of name plate correct for the actual installation?	5.1, 7.2, 1520
Have all coupling surfaces been cleaned and greased?	7.2
Have you carefully aligned the gear reducer shafts with the motor and driven machine shafts?	7.2
Are the fan cage bolts fully tightened down?	7.2, 7.4
Are you sure that the installation is not to be done in a potentially explosive atmosphere?	7.2
Have all fastening bolts been correctly tightened (see table 7.4.1)?	7.2, 7.4
Has the shrink disc been correctly tightened?	7.12
Has the hub clamp correctly tightened?	9.2
Has the eventual cylindrical pinion been correctly mounted on the motor shaft?	9.3
Is there oil in the reducer (correct quantity/level)?	7.2, 8, 12.1,15 20
Is the level plug accessible?	7.2, 8.1
Is the filler plug with filter and valve present (only size ≥ 100)?	8.1, 13.6
Is the filler plug accessible for maintenance?	8.1, 15 20
Has the machine shaft for mounting with shrink disc got correct dimensions tolerances and roughness?	7.12
Has the locking assembly cover been pre-arranged?	7.12
Are the accessories (thermal probes, etc.) compliant with the ATEX specifications for the installation?	7.2, 11
Are you sure that the input speed cannot exceed 1 500 min ⁻¹ ?	7.2
Have you hooked up all required monitoring/safety devices (resistance thermometer, oil level switch, etc.)?	7.2, 11
If a backstop device is mounted, do the direction of free rotation and drive direction of the service and the motor correspond?	7.2, 7.14
Are you sure that the environment is well ventilated and that the ambient temperature is and will be \leq 40 °C?	2
Is there any oil leaks?	12.1
Have you done electrical bonding connection?	7.2
Have you aligned gear reducer and machine shafts?	7.2, 7.13
Have you connected the cooling coil, if any?	10.3
Have you connected the internal cooling exchanger, if any?	10.3
Have you foreseen a proper space for the suction of the cooling fan?	7.2

14.2 - Table of commissioning checks and operations¹⁾

Cod.	Object	Check	On starting	After 24 h and after one week
ی			(category 2 and 3)	(category 2)
Α	Oil leaks (oil seals, joining surfaces, plugs, etc.)	Visual check	Keep under control for the first 4 h:	Temporary check
В	External surface temperature	Check by thermometer	Keep under control the surface temperature until it reaches a steady condition and verify that ΔT 45 K, keep the measured values to compare them in following measurements (see 12.3)	Measure and compare values with those previously measured see 12.3)
С	Sound levels	Sensory check or referably by noisemeter	Keep under control for the first 4 h. When checking by an instrument keep the measured values to compare them in following measurements	Check and compare values with those previously measured
D	Vibrations	Sensory check or preferably by accelerometer	Keep under control for the first 4 h. When checking by an instrument keep the measured values to compare them in following measurements	Check and compare values with those previously measured
Е	Gear reducer bearings (unit pre-assembled with vibration monitoring device)*	Check with proper instruments	Check on starting and after 4 h. Keep the measured values to compare them in following measurements	Measure and compare values with those previously measured
F	Cooling coil	Check by thermometer, chronometer, volume measurer (or other instruments)	Keep under control: water temperature 20°C, water flow rate 10 ÷ 20 dm3/min; absence of water drip	Measure and compare values with those previously measured
G	Functionality of oil/air cooling unit	Check air temperature by thermometer Visual check: – fan direction of rotation – oil circulation	Keep under control for the first 4 h: air temperature ≤ 40 °C; gauge pressure > 0; absence of oil leaks	Measure and compare values with those previously measured
Н	Functionality of oil/ water cooling unit	Check circulation of water and oil	Keep under control for the first 4 h: water temperature ≤ 20 °C, water flow rate 15 ÷ 20 dm³/min; gauge pressure > 0	Measure and compare values with those previously measured
I	Resistance thermometers* (oil, bearings)	Check: – connections to control devices – setting of devices – general functionality	Read value of temperature on the control device and verify that it is lower than the established values. Keep under control for the first 4 h:	Measure and compare values with those previously measured
J	Oil level control switch*	Check: - connections to control devices - setting of devices - general functionality	Keep under control for the first 4 h:	Temporary check
K	Thermostat* (oil)	Check: - setting - electric connections to the safety switch (auxiliary circuits, etc.)	Keep under control for the first 4 h:	Temporary check
L	Cleanliness of external surfaces	Visual check	Dust thickness ≤ 5 mm	Temporary check
M	Cooling air passage	Visual check	On starting and after 4 h	Temporary check
N	Screws and tightening torque	Check by dynamo-metric wrench of the fastening bolts (feet and flanges) and shrink disc	Check when excessive vibration is detected and after 4 h	Measure and compare values with those previously measured
0	Motor absorption	Check by Watt-meter or amp-meter	Check on starting and after 4 h. Keep the measured values to compare them in following measurements	Measure and compare values with those previously measured

The installation responsible has to verify that safety circuits using control switches and thermostats are on, run properly and switch on at once.

Repeat a.m. check procedures:

- at any oil change
 at any exceptional maintenance
 after a continuous stop of 2 or more weeks.

UTD.123.2024-05.00_EN **₹Rossi** 89

14.3 - Table of inspections $^{\scriptscriptstyle ()}$ to be made during the normal operation (to be made after checks listed on table 14.2)

Cod.	Object	Inspections in absence of oil temperature probe	Inspections in presence of oil temperature probe	Ref.
Α	Oil leaks (oil seals, joining surfaces, plugs, etc.)	every six months for category 3G, 3D	every three months	_
	F4	each month for category 2G, 2D	the second secon	
В	External surface temperature	every six months for category 3G, 3D	every three months	12.3
С	Sound levels	each month for category 2G, 2D every six months for category 3G,	every three months	
	Souria leveis	3D each month for category 2G, 2D	every unee monus	13.7
D	Vibrations	every six months for category 3G, 3D	every three months	13.7
Ε	Gear reducer bearings (unit pre-assembled with vibration monitoring device)*	each month for category 2G, 2D every six r	months	_
F	Cooling coil and internal exchanger	every two	years	13.3
G	Functionality of oil/air cooling unit	every six months for category 3G, 3D each month for category 2G, 3D	every three months	doc. spec.
Н	Functionality of oil/water cooling unit	every six months for category 3G, 3D each month for category 2G, 2D	every three months	doc. spec.
I	Resistance thermometers (oil, bearings)	every six r	months	_
J	Oil level control switch*	every six r	months	_
K	Thermostat* (oil)	every six r		_
L	Cleanliness of external surfaces	when necessary, also every day (the a 5 mm thickness)	e dust thickness must not exceed	_
M	Cooling air passage	when necessary, also every day		_
N	Screws and tightening torque	at any oil change and when excess		7.4
0	Motor absorption	every six months for category 3G, 3D each month for category 2G, 2D	every three months	_
P	Electrical bonding	every six months for category 3G, 3D	every three months	_
_		each month for category 2G, 2D		
Q	Cleanliness of filler plug with filter and valve	when necessary, at least every six r		13.6
R	Labyrinth seals and greaser	let in grease with pressure at least of	each month	doc. spec.
S	Name plates	yearly		_
T	Gear reducer bearings with separate lubrication, backstop mounted on motor	with uniform load and pollution free of otherwise replace grease at least e every 6 months for running ≥ 12 h/c	very year for running < 12 h/d or	
U	Presence of water in oil	yearly		_
V	Restoration a/o preservation of surface protection	when necessary to keep painting c spots, if any	oat integral and retouching rusty	7.2
W	Oil seal replacement	1 600 h ÷ 12 500 h and on gear red	ucer revision	13.4
V		4-1-1- 0.0		13.2
Y	Oil change Cleanliness of oil filter	see table 8.3 when detected by clogging device pressure	e or there is an increase in oil	_
-				-

The installation responsible has to verify that safety circuits using control switches and thermostats are on, run properly and switch on at once.

The control intervals stated in the table are the maximum values; for heavy duty or very severe ambient conditions it may be necessary to reduce these intervals.

15 - A series - Mounting positions, oil quantity and position of plugs

For inclined mounting positions, when "spec." is stated on nameplate in IM field, refer to the attached specific documentation.

15.1 - Oil (quantity) levels for worm GEAR REDUCERS and GEARMOTORS sizes 32 ... 81 (A series), supplied FILLED with OIL

Before commissioning, use a dipstick and check that the vertical distance X [mm] **between plug shoulder and oil level** corresponds to the value stated in the table 13.1.1.

Before checking ensure that there are no more gas pockets in the oil which is included in the gear reducer.

Measure as specified in fig. 13.1.1 with gear reducer in mounting position B7.

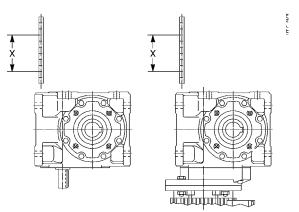
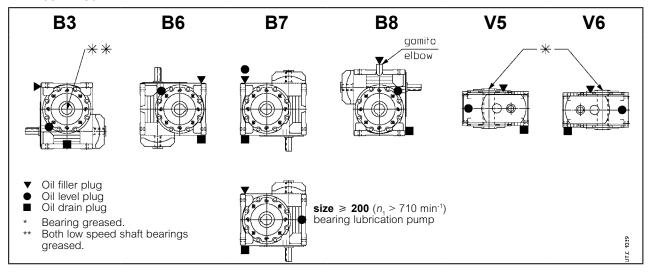
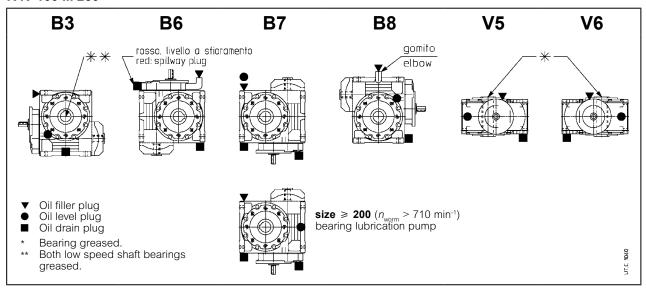


Fig. 13.1.1 - Position the gear reducer or gearmotor, mounting position B7 for the measurement of oil level (quantity).

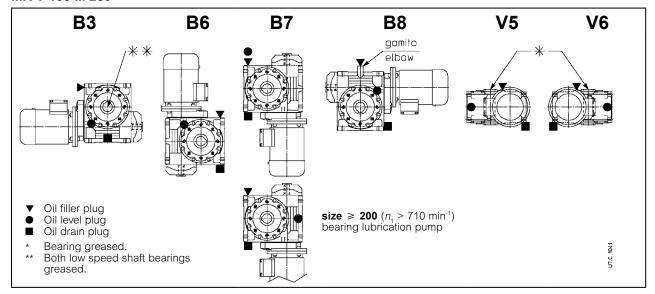
Tab. 13.1.1 - Oil level (dimension x) and quantity for gear reducers and gearmotors A series sizes 32 ... 81

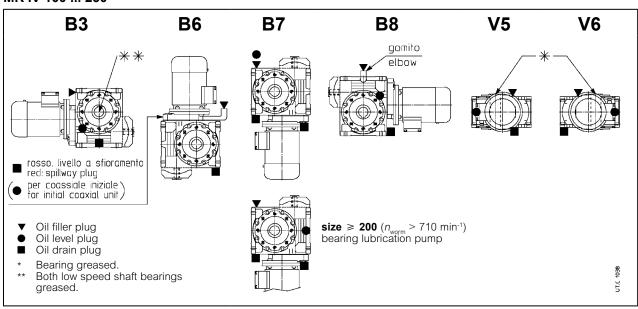

Cina						Oil	level		lounti		sition		antity [l]						
Size			١	/					ľ	V			2IV						
	B3, V	⁄5, V6	В6,	B7	В	8	B3, \	⁄5, V6	В6,	B6, B7		8	B3, V	5, V6	B6, B7		В8		
	mm	I	mm	- 1	mm	I	mm	I	mm	- 1	mm	I	mm	I	mm	- 1	mm	1	
32	34	0.15	25	0.2	34	0.16	42	0.2	25	0.25	42	0.2	-	-	-	-	_	-	
40	34	0.26	24	0.35	34	0.26	43	0.32	24	0.4	43	0.32	43	0.42	24	0.5	43	0.42	
50	52	0.4	26.5	0.6	52	0.4	48	0.5	22	0.7	48	0.5	48	0.6	22	0.8	48	0.6	
63, 64	59	0.8	30	1.15	59	0.8	58	1	30	1.3	58	1	58	1.2	30	1.55	58	1.2	
80, 81	89	1.3	37	2.2	63	1.7	96	1.5	37	2.5	50	2	B3 : 96 V5 : 89 V6 : 89	1.7 1.8 1.8	37	2.8	50	2.3	

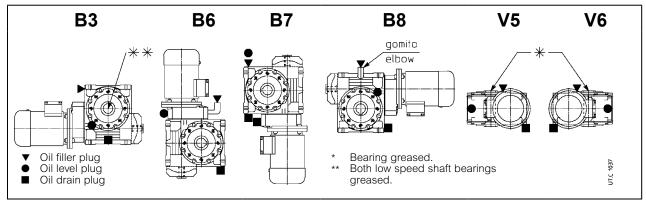
¹⁾ Tolerance of dimension x: ± 2 mm.


15.2 - Mounting positions and plug position for worm GEAR REDUCERS and GEARMOTORS sizes 100 ... 250 (A series), supplied WITHOUT OIL

Verify oil level through the level plug which is placed in the position indicated the following figures. For mounting position B7 the level is stated on the dipstick mounted on the filler plug.


R V 100 ... 250


R IV 100 ... 250


MR V 100 ... 250

MR IV 100 ... 250

MR 2IV 100 ... 126

16 - E series - Mounting positions, oil quantity and position of plugs

For inclined mounting positions, when "spec." is stated on nameplate in IM field, refer to the attached specific documentation.

16.1 - Oil level (quantity) for coaxial GEAR REDUCERS and GEARMOTORS sizes 50 ... 81 (E series) supplied FILLED WITH OIL

Before commissioning of the units verify that the dimensions X [mm] between the **plug shoulder and oil level** corresponds to the value stated in table 14.1, using a dipstick.

Before checking ensure that there are no more gas pockets in the oil which is included in the gear reducer.

Measure as specified in fig. 14.1.1 with gear reducer in mounting position B6.

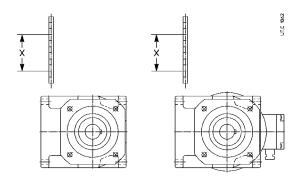
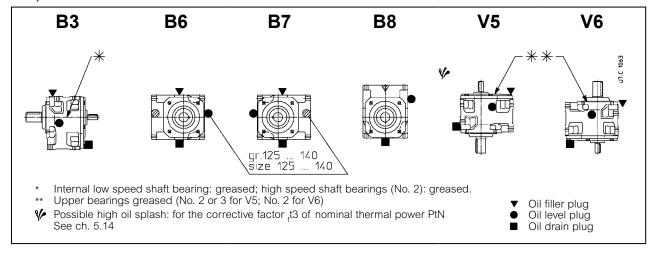
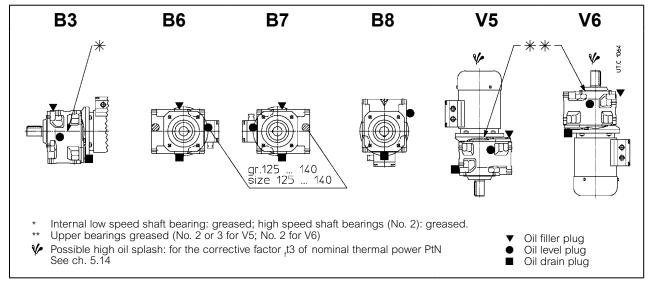


Fig. 14.1.1 - Position the gear reducer or gearmotor, mounting position B6 for the measurement of oil level (quantity).

Tab. 14.1.1 - Oil level (dimension x) and oil quantity gear reducers and gearmotors E series sizes 50 ... 81


		Train of gears													
					ľ	Mounting	position	1							
a .				Oil I	evel (dim	ension x ¹) [mm] ar	nd quanti	ty [I]						
Size			2	! I					3	I					
	В	3	B6, B7,	B8, V6	v	5	B3, V	5, V6	V6 B6, B7 B8						
	mm	1	mm	1	mm	1	mm	1	mm	1	mm	1			
50, 51	65	0.8	50	1.1	35	1.4	60	0.8	45	1.1	30	1.4			
63, 64	120	1.6	90	2.2	60	2.8	115	1.6	85	2.2	55	2.8			
80, 81	110	3.1	75	4.3	45	5.5	105	3.1	70	4.3	40	5.5			

¹⁾ Tolerance of dimension x: ± 5 mm.


16.2 - Mounting positions and plug positions for coaxial GEAR REDUCERS and GEARMOTORS sizes 100 ... 180 (E series), supplied WITHOUT OIL

Verify oil level through the level plug which is placed in the position indicated the following figures. For mounting position B7 the level is stated on the dipstick mounted on the filler plug.

R 2I, 3I 100 ... 180

MR 2I, 3I 100 ... 180

UTD.123.2024-05.00_EN

17 - G series - Mounting positions, oil quantity and position of plugs

For inclined mounting positions, when "spec." is stated on nameplate in IM field, refer to the attached specific documentation.

17.1 - Oil levels (quantity) for helical and bevel helical GEAR REDUCERS AND GEARMOTORS sizes 40 ... 81 (G series) supplied FILLED with OIL

Before commissioning of the units verify that the dimensions X [mm] between the plug shoulder and oil level corresponds to the value stated in table 15.1, using a dipstick.

Before checking ensure that there are no more gas pockets in the oil which is included in the gear reducer. Measure as specified in fig. 15.1.1 (helical) and 15.1.2 (helical bevel).

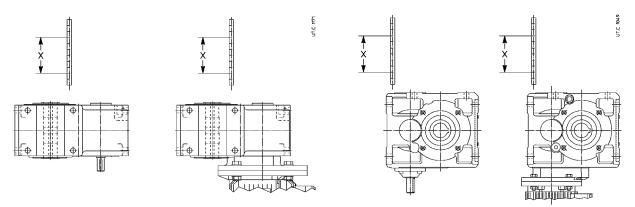


Fig. 15.1.1 - Position the helical gear reducer of gearmotor, mounting position V6 for oil level (quantity) measurement.

Fig. 15.1.2 - Position the bevel helical gear reducer or gearmotor, mounting position B7 for oil level (quantity) measurement.

Tab. 15.1.1 - Oil level (dimension X) and oil quantity for HELICAL gear reducers and gearmotors G series sizes 40 ... 81

													Tra	ain d	of ge	ars										
												N	loui	nting	g pos	sitior	า									
									Oi	l lev	el (d	dime	ensic	n x	^{I)}) [m	m] aı	nd qu	ıantit	y [l]							
Size				I			21								;	31			41							
OIZE	B3, B8 B7 B6, V				6, V5, B3, B8			В В6 Е			В7, V		В3,	B3, B8 B6			B7, V	B3, B8		В6		B7,				
					2				F	2	M	IR	2	-					2)	3)					2) :	
	mm	1	mm	1	mm	1	mm	I	mm	I	mm	I	mm	Ι	mm		mm	I	mm	I	mm	I	mm	I	mm	
40	_	_	_	_	_	_	45	0.4	_	-	24	0.55	24	0.55	35	0.47	2	0.7	12	0.6	-	_	-	_	-	_
50	_	-	_	-	_	-	60	0.6	25	0.9	30	0.8	30	8.0	45	0.7	5	1.05	15	1	_	-	ı	_	ı	-
63, 64	80	0.7	65	0.8	46	1	60	0.9	42	1.4	48	1.2	48	1.2	58	1	40	1.5	V5 : 5	50 1,3 50 1,4 50 1,3	58	1.1	40	1.8	50	1.4
80, 81	115	1.2	92	1.5	68	1.9	80	1.5	45	2.7	54	2.3	54	2.3	72	1.7	42	2.9	V5 : 4	52 2,5 48 2,6 52 2,5	72	1.9	42	3.2	52	2.7

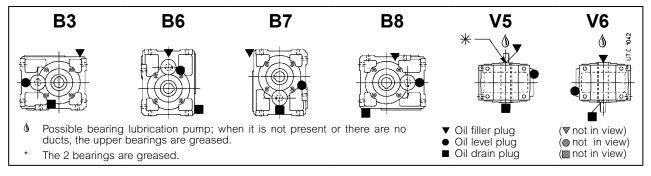
Tab. 15.1.2 - Oil level (dimension X) and oil quantity for **BEVEL HELICAL** gear reducers and gearmotors G series 40 ... 81

										Tr	ain o	f gea	ırs									
										Mou	nting	pos	ition									
							Oi	l leve	el (din	nensi	on x ¹) [mr	n] an	d qua	antity	[I]						
Size			C	I						10	CI							С	31			
	B3, B	6, B7	В	8	V5,	V6	B3 B6, B7 B8 V5, V6						B3, B7 B6				В	8	V5, V6			
	4	.)			2	2)	4) 2)							4) 5)						2)		
	mm	-	mm	- 1	mm	-	mm	1	mm	I	mm	-	mm	1	mm	-	mm	1	mm	-1	mm	- 1
40	48	0.26	30	0.35	41	0.3	31	0.31	15	0.5	30	0.4	50	0.35	_	-	_	-	_	-	-	-
50	48	0.4	30	0.6	50	0.45	50	0.45	15	0.8	30	0.65	54	0.5	50	0.5	15	0.9	30	0.7	54	0.55
63, 64	72	0.8	40	1	48	0.95	58	1	15	1.6	42	1.2	45	1.15	58	1.2	15	1.8	42	1.4	45	1.35
80, 81	90	1.3	50	2	56	1.8	90	1.6	25	2.7	48	2.2	56	2	90	1.9	25	3	48	2.5	56	2.3

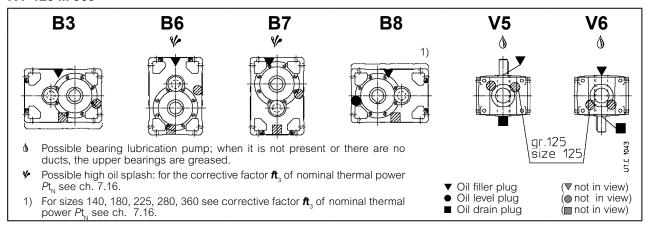
¹⁾ Tolerance of dimension x: \pm 5 mm for sizes \leq 50; \pm 10 for size \geq 63.

²⁾ For mounting positions V5 and V6 upper bearings are greased.

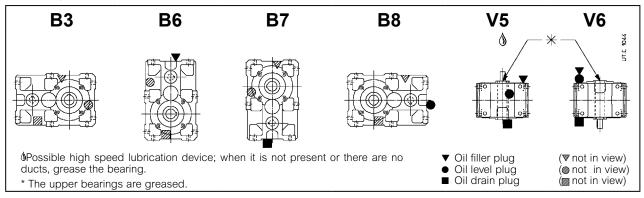
³⁾ The first reduction stage (the first 2 stages for 4I), mounting position V5, is lubricated with grease for life.

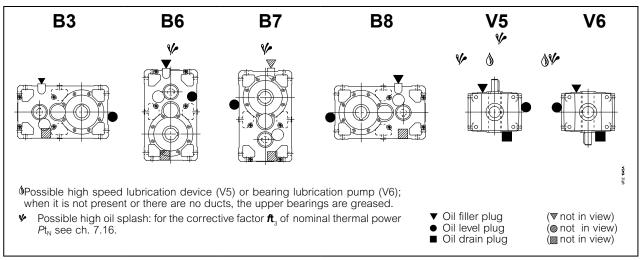

⁴⁾ For design UO3D, mounting positions B6 or B7 the bearings of upper bevel pinion are greased.

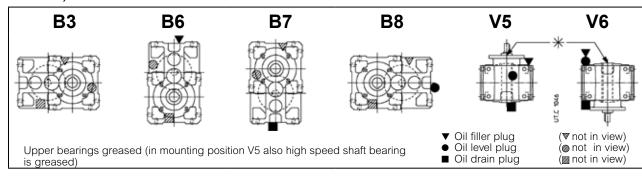
⁵⁾ For C3I, mounting position B6, the bearing of the first gear pair (wheel side) is greased.


17.2 - Mounting position and plug positions for helical and bevel helical GEAR REDUCERS and GEARMOTORS sizes 100 ... 360 (G series), supplied WITHOUT OIL

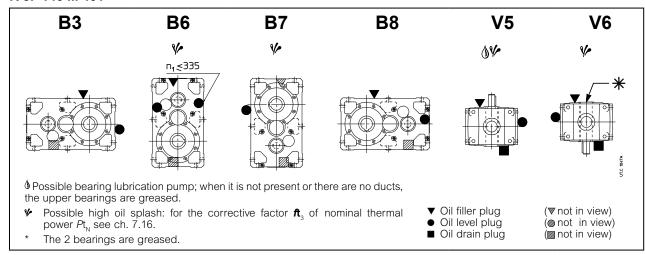
Verify oil level through the level plug which is placed in the position indicated the following figures. For mounting position B7 the level is stated on the dipstick mounted on the filler plug.


R I 100

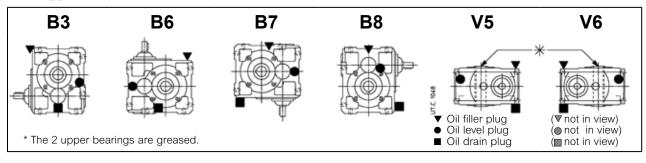

R I 125 ... 360

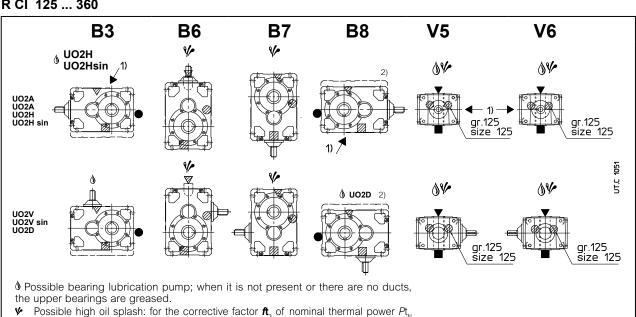


R 2I 100, 125



R 2I 140 ... 401

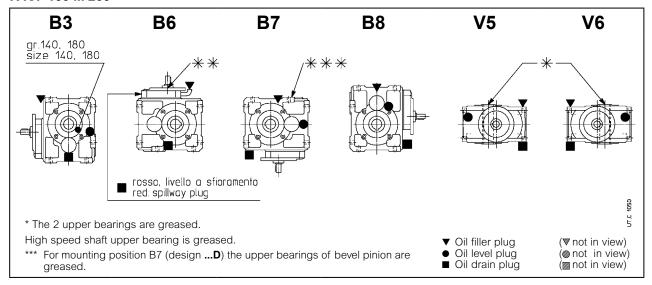



R 3I 140 ... 401

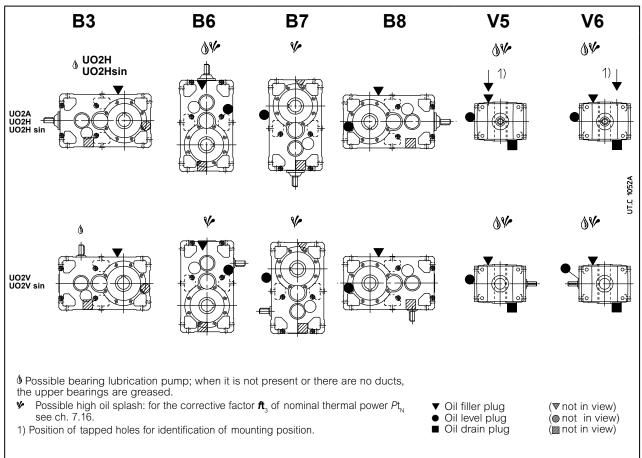
RCI 100

R CI 125 ... 360

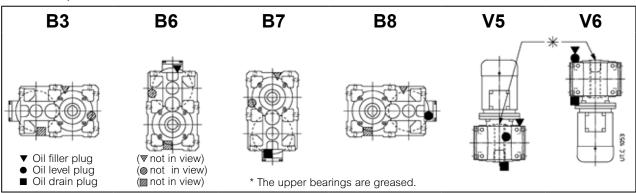
UTD.123.2024-05.00_EN

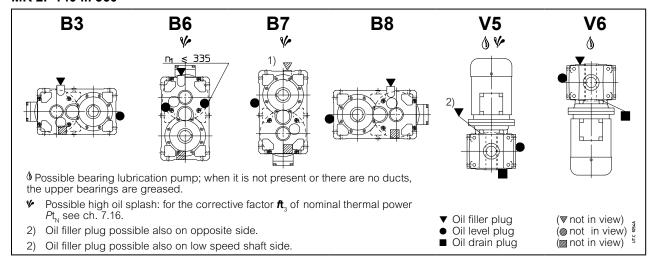

see ch. 7.16.

 Pt_{N} see ch. 7.16.

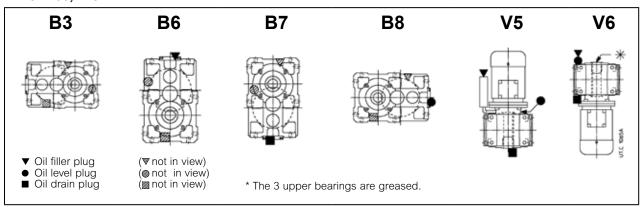

1) Position of tapped holes for identification of mountig position.

For sizes 140, 180, 225, 280, 360 see corrective factor \mathbf{f}_3 of nominal thermal power

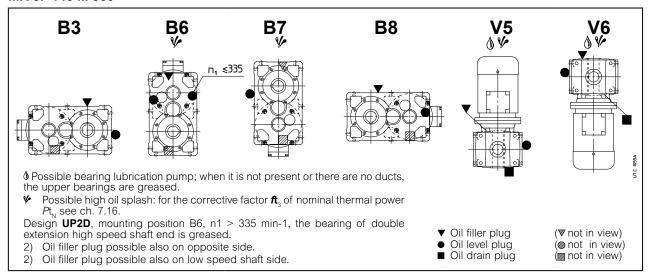

■ Czajoporca ichi pstragrico olio (nothim wiesta)

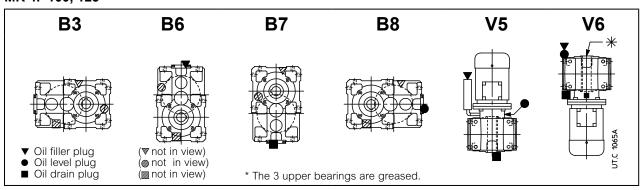


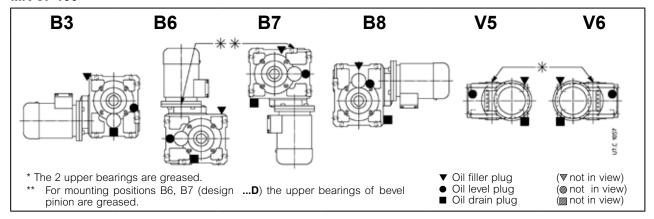
R C2I 140 ... 401



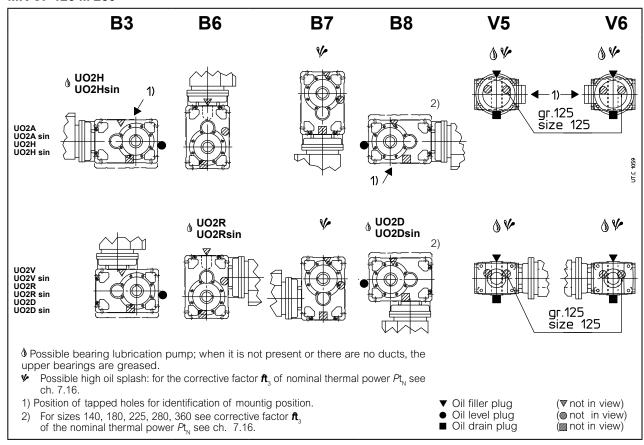
MR 2I 100, 125



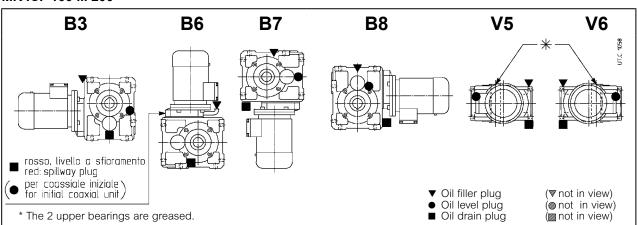

MR 3I 100, 125

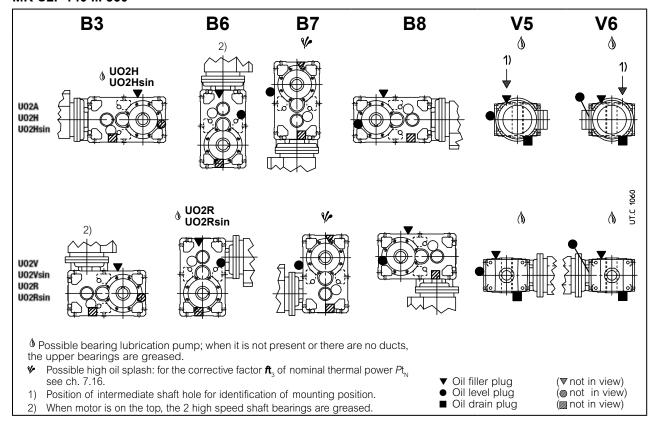


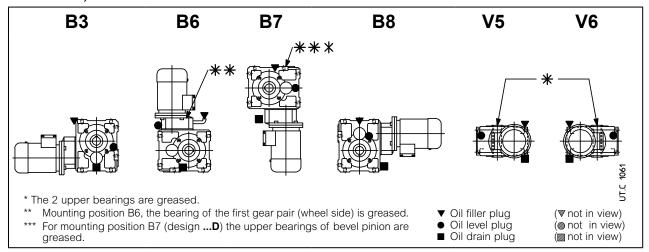
MR 3I 140 ... 360



MR 4I 100, 125

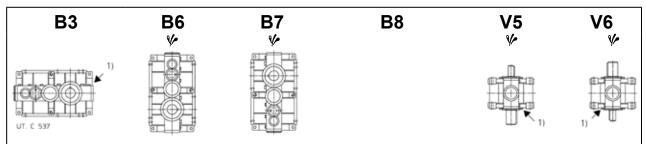



MR CI 125 ... 280

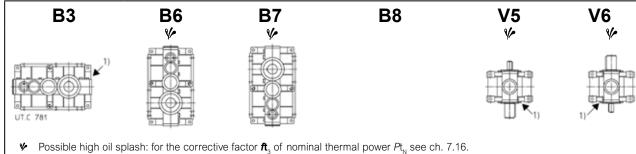

MR ICI 100 ... 200

MR C2I 140 ... 360

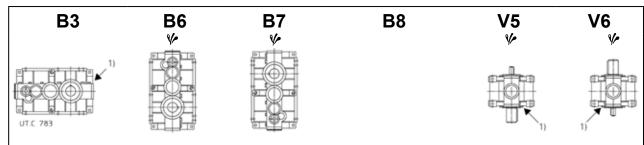
MR C3I 100, 125


18 - H series - Mounting positions, oil quantity and position of plugs

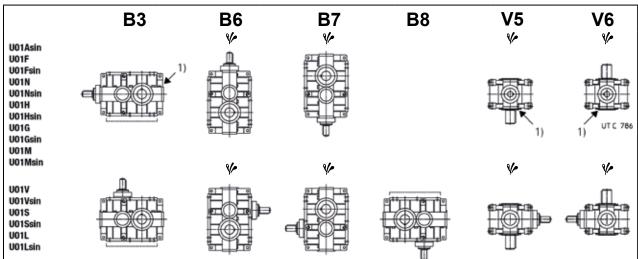
For oil levels and position of plugs see attached SPT sketch


Before commissioning, check lubricant level.

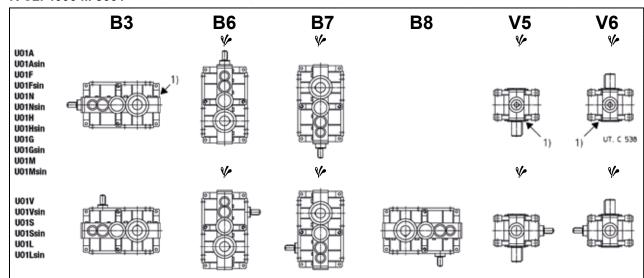
R 2I 4000 ... 8001


- Possible high oil splash: for the corrective factor \mathbf{f}_{x} of nominal thermal power Pt_{x} see ch. 7.16.
- 1) Mounting position B3 may be identified from the position of the screw-heads as arrowed. The same applies for V5 and V6 with double extension or hollow low speed shaft.

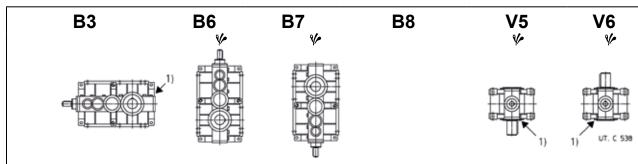
R 3I 4000 ... 8001


- 1) Mounting position B3 may be identified from the position of the screw-heads as arrowed. The same applies for V5 and V6 with double extension or hollow low speed shaft.

R 4I 4000 ... 8001


- Possible high oil splash: for the corrective factor \mathbf{f}_{t_0} , of nominal thermal power P_{t_0} see ch. 7.16.
- 1) Mounting position B3 may be identified from the position of the screw-heads as arrowed. The same applies for V5 and V6 with double extension or hollow low speed shaft.

R CI 4000 ... 8001


- **V** Possible high oil splash: for the corrective factor $\mathbf{\hat{h}}_3$ of nominal thermal power Pt_N see ch. 7.16.
- 1) Mounting position **B3** may be identified from the position of the screw-heads as arrowed. The same applies for V5 and V6 with double extension or hollow low speed shaft.

R C2I 4000 ... 8001

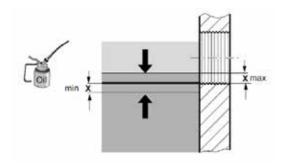
- **V** Possible high oil splash: for the corrective factor \mathbf{f}_3 of nominal thermal power P_{t_N} see ch. 7.16.
- 1) Mounting position **B3** may be identified from the position of the screw-heads as arrowed. The same applies for V5 and V6 with double extension or hollow low speed shaft.

R C3I 4000 ... 8001

- **V** Possible high oil splash: for the corrective factor \mathbf{ft}_3 of nominal thermal power $P\mathbf{t}_N$ see ch. 7.16.
- 1) Mounting position **B3** may be identified from the position of the screw-heads as arrowed. The same applies for V5 and V6 with double extension or hollow low speed shaft.

UTD.123.2024-05.00_EN Rossi 105

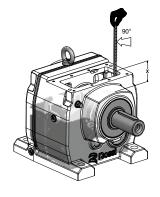
19 - iFIT series - Mounting positions, oil quantity and position of plugs


For inclined mounting positions, when "spec." appears in the "IM" field on the nameplate, the specific documentation attached to these Operating Instructions should be consulted.

19.1 - Oil quantity for helical inline iC, bevel helical iO GEARMOTORS (supplied FILLED WITH OIL)

Before commissioning, make sure oil is present, using the level plug (see chap. 18.2): position the gear reducer in the mounting position stated in the nameplate, identify the level plug, slowly loosen the cap, keeping in mind that a small amount of oil may leak out.

Check the oil level as per fig. belowì (dimension x in the table)


Size.	x
iC, iO	mm
372-373	
472-473	1,5
572-573	1,5
672-673	
772-773	2
872-873	2
972-973	3

For size iC 27 and sizes iC 47 and 57, in mounting position B6, the oil level check should be carried out by means of a dipstick by measuring the vertical distance between the oil level and the closing plane of the gearbox cover, with the gearbox itself positioned in B3 mounting position regardless of the mounting position shown on the nameplate.

The measured value must not exceed the value given in the table, with tolerance \pm 1 mm.

Size.			X _{max} [mm]		
iC	В3	В6	B7	B8	V5, BX	V6
272	74	45	45	45	22	22
273	76	42	42	42	19	19
472	_	39	_	_	_	_
473	_	32	_	_	_	_
572	_	32	_	_	_	_
573	_	28	_	_	_	_

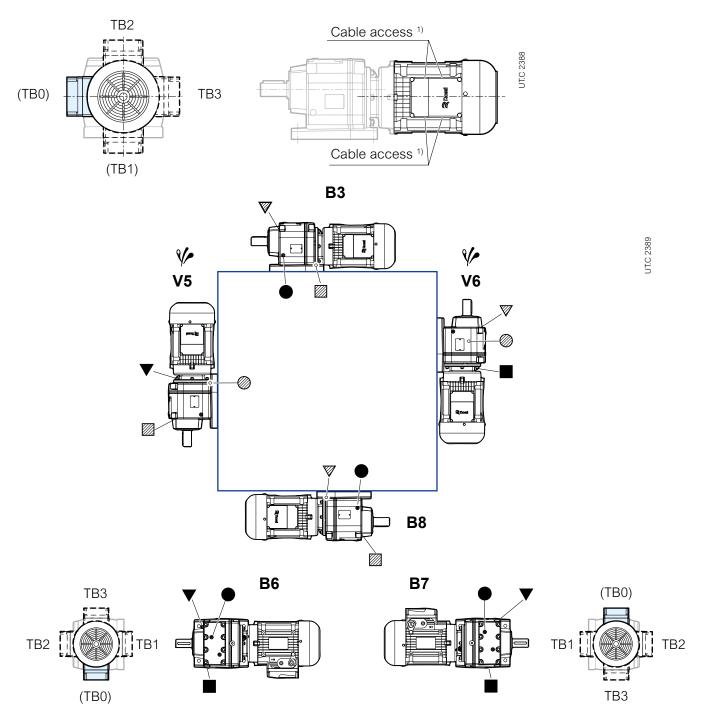
iC... PE; FE

Gearmotor size	Oil quantity [l]					
	В3	В6	B7	В8	V5	V6
iC 27	0,45	0,6	0,6	0,55	0,9	0,8
iC 37	0,3	0,75	0,95	0,95	1,05	0,85
iC 47	0,7	1,5	1,5	1,5	1,65	1,6
iC 57	0,8	1,7	1,7	1,7	2,1	1,9
iC 67	1,1	1,8	2,0	2,8	2,9	2,4
iC 77	1,2	2,5	3,4	3,6	3,8	3,3
iC 87	2,3	6,3	6,5	7,2	7,2	6,4
iC 97	4,6	11,3	11,7	11,7	13,4	11,7

iO...PE

Gearmotor size	Oil quantity [l]					
	В3	B6	В7	B8	V5	V6
iO 373	0,5	1,25	1,0	1,0	0,95	0,95
iO 473	0,8	2,0	1,3	1,5	1,6	1,6
iO 573	1,1	2,8	2,2	2,2	2,3	2,1
iO 673	1,1	3,45	2,4	2,6	2,6	2,6
iO 773	2,2	5,8	4,1	4,4	4,2	4,4
iO 873	3,7	10,9	8,0	8,7	8,0	8,0
iO 973	7,0	20,0	14,0	15,7	15,7	15,5

iO... FE...S


Gearmotor size	Oil quantity [l]						
	В3	B6	B7	B8	V5	V6	
iO 373	0,5	1,5	1,1	1,1	1,0	1,0	
iO 473	0,8	2,2	1,3	1,7	1,6	1,6	
iO 573	1,2	3,15	2,2	2,4	2,5	2,3	
iO 673	1,1	3,7	2,4	2,8	2,7	2,7	
iO 773	2,1	5,9	4,1	4,4	4,5	4,5	
iO 873	3,7	11,9	8,2	9,0	8,4	8,4	
iO 973	7,0	21,5	14.7	17,3	15,7	16,5	

iO... FE...H; SE...H

Gearmotor size	Oil quantity [l]					
	В3	B6	B7	В8	V5	V6
iO 373	0,5	1,4	1,0	1,0	1,0	1,0
iO 473	0,8	2,15	1,3	1,6	1,6	1,6
iO 573	1,2	3,15	2,2	2,4	2,7	2,4
iO 673	1,1	3,7	2,4	2,7	2,6	2,6
iO 773	2,1	5,9	4,1	4,6	4,4	4,4
iO 873	3,7	11,1	8,2	8,8	8,0	8,0
iO 973	7,0	20,0	14,7	15,7	15,7	15,7

19.2.a - Mounting positions and position of plugs for FOOT mounted helical inline GEARMOTORS iC

iC 272 / 273 PE ... iC 972 / 973 PE

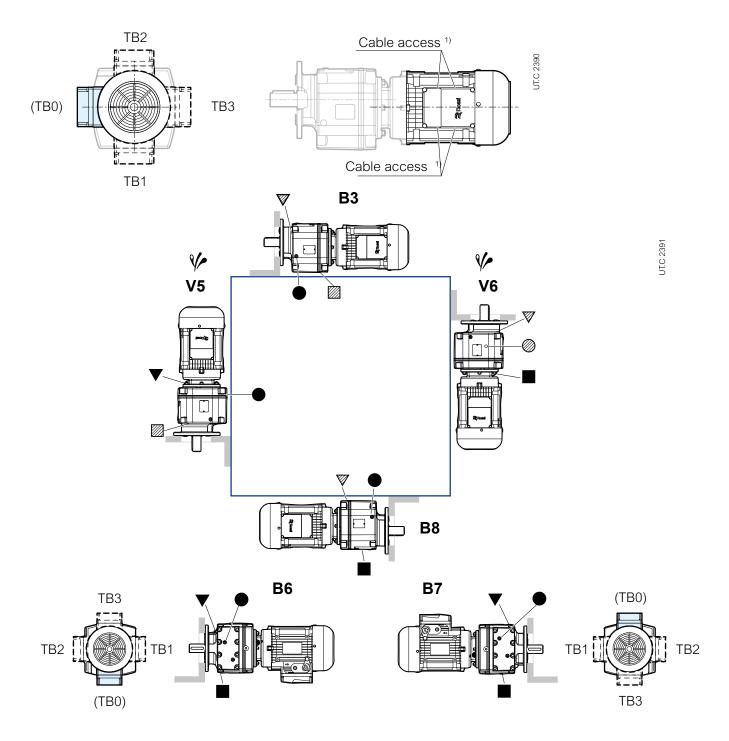
iC 27...: breather plugs not present for B3, B8, B6, B7

iC 27...: oil level and drain plugs not present iC 47..., iC 57... : oil level plug not present for B6

breather plug

breather plug on opposite side (not in view)

Possible high oil splash: for the corrective factor \mathbf{f}_{t3} of nominal thermal power P_{TN} see page 49.


oil level plug oil drain plug

oil level plug on opposite side (not in view) oil drain plug on opposite side (not in view)

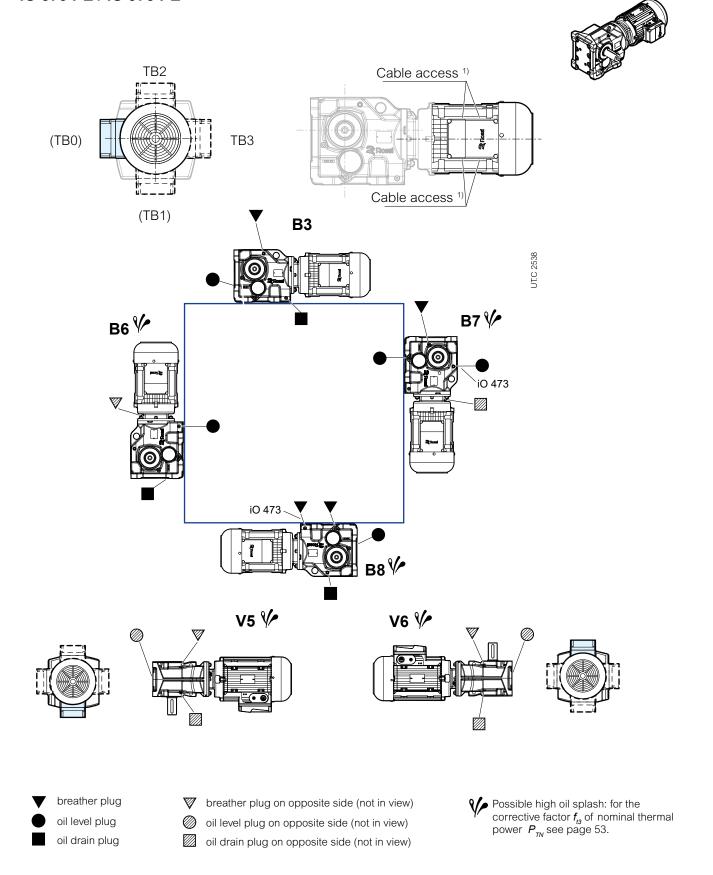
¹⁾ The customer is responsible for cable connection: the terminal box is incorporated with the motor housing and is equipped with bilateral cable access with pre-set cutting (one for the power able and one for the auxiliary devices).

19.2.b - Mounting positions and position of plugs for FLANGE mounted helical inline GEARMOTORS iC

iC 272 / 273 FE ... iC 972 / 973 FE

iC 27...: breather plugs not present for B3, B8, B6, B7

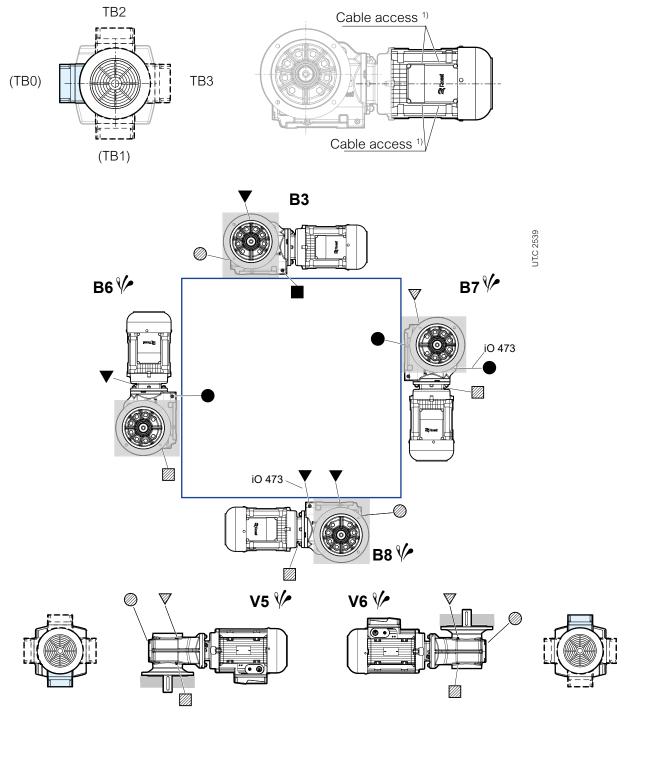
iC 27...: oil level and drain plugs not present iC 47..., iC 57...: oil level plug not present for B6


▼ breather plug
▼ breather plug on opposite side (not in view)
▼ oil level plug on opposite side (not in view)
▼ oil drain plug
▼ oil drain plug on opposite side (not in view)

Possible high oil splash: for the corrective factor f_{t_3} of nominal thermal power P_{TN} see page 49.

¹⁾ The customer is responsible for cable connection: the terminal box is incorporated with the motor housing and is equipped with bilateral cable access with pre-set cutting (one for the power able and one for the auxiliary devices).

19.2.c - Mounting positions and position of plugs for FOOT mounted bevel helical GEARMOTORS iO


iO 373 PE / iO 973 PE

¹⁾ The customer is responsible for cable connection: the terminal box is incorporated with the motor housing and is equipped with bilateral cable access with pre-set cutting (one for the power able and one for the auxiliary devices).

iO 373 FE / iO 973 FE

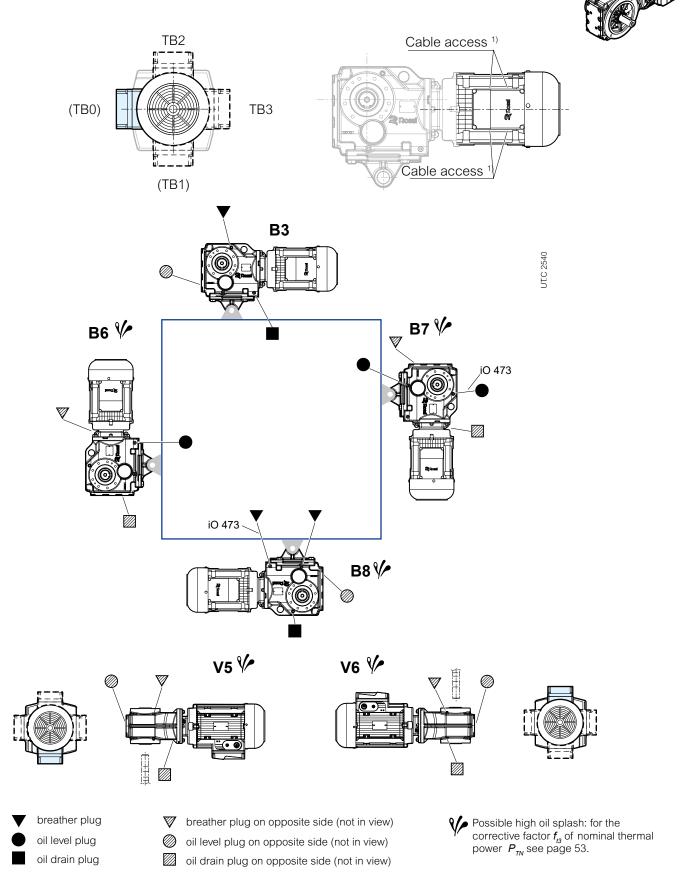
breather plug on opposite side (not in view)

oil level plug on opposite side (not in view)

oil drain plug on opposite side (not in view)

breather plug

oil level plug


oil drain plug

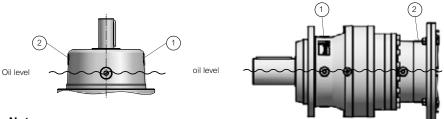
Possible high oil splash: for the corrective factor f_{t3} of nominal thermal

power P_{TN} see page 53.

¹⁾ The customer is responsible for cable connection: the terminal box is incorporated with the motor housing and is equipped with bilateral cable access with pre-set cutting (one for the power able and one for the auxiliary devices).

iO 373 SE / iO 973 SE

¹⁾ The customer is responsible for cable connection: the terminal box is incorporated with the motor housing and is equipped with bilateral cable access with pre-set cutting (one for the power able and one for the auxiliary devices).


20 - EP series - Mounting positions, oil quantity and tanks

Oil filling

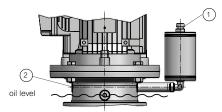
Pay attention to the correct position of the oil level plug (see cat. EP).

For mounting positions with input side in vertical position, during the oil filling it is very important to always open the plug located up to the level air to escape in order to reach the correct level.

When the output speed n_2 is lower than 0,3 min⁻¹ and the mounting position is horizontal, the gear reducer must be completely filled with oil.

Oil filling:

- a. Open plugs 1 and 2.
- b. 2. Fill with oil by the plug 1 up to reach the correct level
- c. Close plugs 1 and 2.

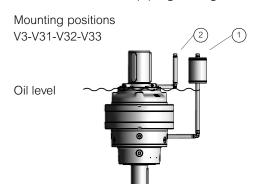

Notes

For oil quantities gear reducers for slewing drives are to be filled with (output designs R-S-H), refer to quantities stated in previous tables for gear reducers with output design F.

Stated oil quantities are approximate for provisioning.

The exact quantity gear reducer is to be filled with is definitely given by the level.

Expansion tanks



For some mounting positions, as foreseen in ch. 6, an expansion tank is needed in order to allow the correct oil level and the natural thermal expansion of lubricant.

It is very important that it must always be placed above the oil level. For the oil filling consider the instructions below:

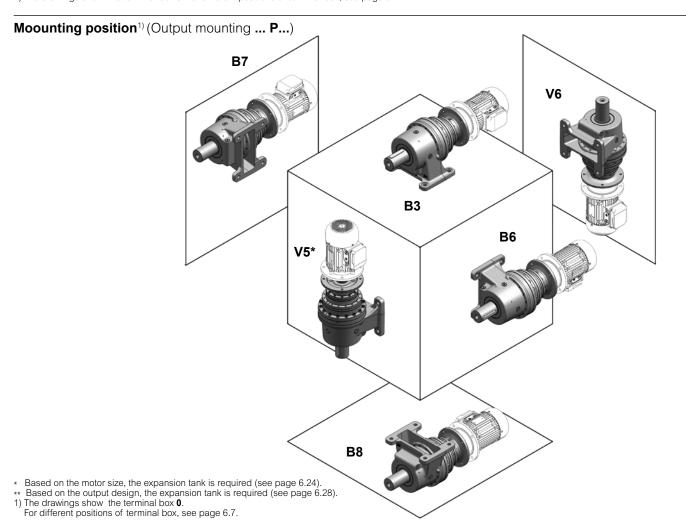
- a. Open plugs 1 and 2.
- b. Fill with oil by the plug 1 up to reach the correct level
- c. Close plugs 1 and 2.

For sizes from 030A with mounting positions V3-V31-V32-V33, when ordered, the expansion tank kit does not include the piping arrangement. In these cases, please refer to the instructions below:

Oil filling:

- a. Open plugs 1 and 2.
- b. Fill with oil by the plug 1 up to reach the correct level
- c. Close plugs 1 and 2.

Tab. 19.1 Grease quantity for slewing drives output bearings


Size	F	R	S	5	F	ł
	Output design	grease quantity g	Output design	grease quantity g	Output design	grease quantity g
007	R30b	50	S30b	50	H30b	50
015	R30c	100	S30c	100	H30c	70
021	R30d	120	S30d	120	H30d	120
030	R30e	150	S30e	150	H30e	150
042	R30f	170	S30f	170	H30f	170
060	R30g	200	S30g	200	H30g	200
085	R30h	220	S30h	220	H30h	220
125	R30i	250	S30i	250	H30i	250
180	R30j	300	S30j	300	H30j	300
250	R30k	350	S30k	350	H30k	350

Mounting positions¹⁾ (Output design ... F..., ... A...)

- Based on the motor size, the expansion tank is required (see page 6.24).
 Based on the output design, the expansion tank is required (see page 6.28).
 Reference hole for the identification of the mounting position.
 The drawings show the terminal box 0. For different positions of terminal box, see page 6.7.

					16	L									2E	L									3E	L									4	L				
\mathbf{Q}_{R}	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	A600	012A	015A	018A	021A
B3 B8	0,7	0,7	1,2	1,3	1,3	2	1,9	1,9	3	3,4	0,8	0,8	1,3	1,4	1,4	2,7	2,6	2,6	3,2	3,2	1	1	1,4	1,5	1,4	2,5	2,6	2,6	3,3	3,3	1,1	1,1	1,5	1,6	1,5	2,6	2,6	2,6	3,2	3,2
V1, V5	0,8	0,8	1,5	1,6	1,4	2,5	2	2,1	3,9	4	1,1	1,2	2	2,2	2,1	3,9	3,9	3,9	5,1	5	1,5	1,5	2,3	2,5	2,3	4,5	4,4	4,4	5,8	5,8	1,8	1,8	2,6	2,8	2,6	4,8	4,8	4,8	6	6
V3, V6	1	1	1,9	2,1	2	2,9	2,8	2,9	4,3	5,2	1,3	1,3	2,1	2,3	2,3	4,1	4,3	4,3	4,8	4,7						3,9							2,5	2,7	2,5	4	4,3	4,3	4,8	4,8

²⁾ Stated oil quantities are approximate for provisioning. The exact quantity gear reducer is to be filled with is definitely given by the level.

022A ... 710A

$\textbf{Mounting positions}^{1)} \, (\text{Output design ...} \, \textbf{F..., ...} \, \textbf{A...})$

- Based on the motor size, the expansion tank is required (see page 6.24).
 Based on the output design, the expansion tank is required (see page 6.28).
 Reference hole for the identification of the mounting position.
 The drawings show the terminal box 0. For different positions of terminal box, see page 6.7.

				1EL						2	EL			
	Q_{R}	022A	030A	031A	042A	043A	022A	030A	031A	042A	043A	060A 061A	085A	125A
	B5	2,9	3,2	4,5	4,4	5,6	2,7	4,4	5,9	5,3	6,7	6,7	7,7	14
'	V1	3,6	5,2	8,1	7,5	10,2	3,9	6,2	9,2	8	10,8	10,6	14,1	24
'	V3	3,3	6,5	5	8,8	6	2,9	8,9	7,8	10,7	8,3	13,5	15,4	27

						3EL												4EL						
Q_{R}	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	500A	710A
B5	3,1	3,6	5,1	4,9	6,3	6,3	7,9	15	22	32	45	3,1	3,6	5,1	5	6,4	6,2	8,1	15	22	33	46	59	89
V1	5,5	6	9	8,7	11,5		14,5	27	40	60	86	5,7	6,8	9,8	9,5			15,5		43	63	89	114	174
V3	3,8	7,1	6,1	9,8	7,5	12,5	15,8	29	43	63	89	3,8	7,3	6,2	10	7,6	12,4	16,2	30	44	65	91	117	177

²⁾ Stated oil quantities are approximate for provisioning. The exact quantity gear reducer is to be filled with is definitely given by the level.

Mounting positions $^{1)}$ (Output design ... F..., ... A...)

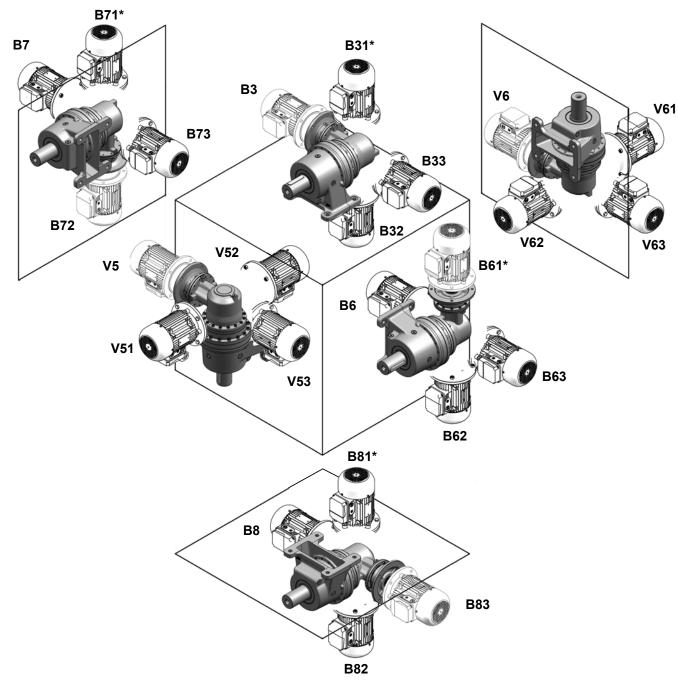
- Based on the motor size, the expansion tank is required (see page 6.24).
 Based on the output design, the expansion tank is required (see page 6.28).
 Reference hole for the identification of the mounting position.
 The drawings show the terminal box 0. For different positions of terminal box, see page 6.7.

					2E	В									3E	В									4E	В				
Q_{R}	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
V3 V33	2,7	2,8	4,4	4,5	4,4	8,2	8,3	8,3	14,3	14,3	3	3,1	3,7	3,8	3,6	6,1	6,3	6,3	6,8	6,8	3,3	3,3	3,9	4,1	3,9	5,4	5,6	5,6	6,2	6,2
B5, B53	1,5	1,5	2,5	2,5	2,5	4,7	4,6	4,6	8	8	1,7	1,7	2,1	2,2	2,1	3,7	3,6	3,6	4,2	4,3	1,8	1,8	2,2	2,3	2,2	3,3	3,3	3,3	4	4
B51	2,6	2,6	4,2	4,3	4,2	8	7,8	7,8	13,3	13,3	2,9	2,9	3,7	3,9	3,7	6,6	6,5	6,5	7,7	7,7	3,2	3,2	4	4,2	4	6,2	6,1	6,1	7,4	7,4
B52	1,8	1,9	3	3	3	5,6	5,6	5,6	9,8	9,8	2	2	2,4	2,5	2,4	4,2	4,1	4,1	4,7	4,8	2,1	2,1	2,5	2,6	2,5	3,6	3,6	3,6	4,3	4,3
V1 V13	1,9	1,9	3	3,1	3	5,7	5,5	5,5	9,4	9,4	2,2	2,2	3	3,2	3	5,4	5,4	5,4	6,5	6,6	2,5	2,5	3,3	3,5	3,3	5,5	5,4	5,4	6,7	6,7

²⁾ Stated oil quantities are approximate for provisioning. The exact quantity gear reducer is to be filled with is definitely given by the level.

022A ... 710A

Mounting positions¹⁾ (Output design ... F..., ... A...)



- ** Based on the output design, the expansion tank is required (see page 6.28).
 Reference hole for the identification of the mounting position.
 1) The drawings show the terminal box 0. For different positions of terminal box, see page 6.7.

				2E	В									3EB												4EB						
Q_{R}	022A	030A	031A	042A	043A	060A 061A	085A	125A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	500A	710A
V3 V33	11,2	12,5	12,4	18,8	15,7	20	33,5	45	6,5	11	10	14,5	11,9	20,5	20,6	42	56	84	106	4,9	10,3	8,1	11,9	9,6	14,6	23,6	36	52	68	101	125	196
B51	12,5	9,9	16,5	18,8	20,8	20	33,5	44	8,1	9,9		13,2	15,9	19,1	19,2	38	52		104	6,8	9,8	6,1 11,7	11,5	14,3	14,2	22,9	32	50	66		122	194
B52 V1 V13	7,6 10,1			,	,					,	7,8 10,5	,	,					46 70				6,4 10,4								51 93		

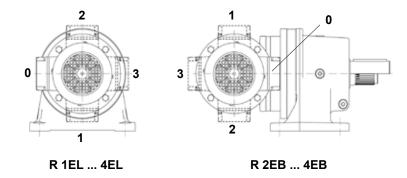
²⁾ Stated oil quantities are approximate for provisioning. The exact quantity gear reducer is to be filled with is definitely given by the level.

Mounting positions¹⁾ (Output design ... **P...**)

					2E	В									3E	В									4E	В				
Q_{R}	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	A600	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
B3 B8 B33 B83		' '	'	'		'		4,6 4,6		8	1,7 1,7	1,7 1,7		2,2 2,2	'				4,2 4,2					'	2,2 2,2			,	4	4
B31 B81 B32 B82			,	4,3 3	4,2 3	8 5,6	7,8 5,6		13,3 9,8					3,9 2,5					7,7 4,7					4,2 2,6		6,2 3,6		6,1 3,6	7,4 4,3	7,4 4,3
V5 V53 V6 V63	1,9 2,7	1,9 2,8		3,1 4,5					9,4 14,3			2,2 3,1		3,2 3,8		5,4 6,1			6,5 6,8										6,7 6,2	' '

 $^{^\}star$ Based on the motor size, the expansion tank is required (see page 6.24). 1) The drawings show the terminal box $\bf 0$. For different positions of terminal box, see page 6.7.

001A ... 710A - Terminal box positions


Unless otherwise stated, the gearmotors are supplied with motor terminal box mounted in position **0** motor fan side (see figure). On request, positions 1, 2 and 3 are available.

Code for the designation: ,TB0 (standard) ,TB1 ,TB2 ,TB3.

The cable input is at Buyer's request.

In position 1 for inline and 2 for bevel helical, the terminal box may overhang from foot mounting base plane.

The following figures refer to mounting positions B3 - B5.

Mounting positions¹⁾ (Output design ... F..., ... A...)

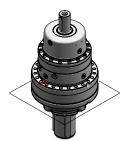

B5

- Based on the motor size, the expansion tank is required (see page 6.24).
 Based on the output design, the expansion tank is required (see page 6.28).
 Reference hole for the identification of the mounting position.

Mounting positions¹⁾ (Output design ... **P...**)

* Based on the gear reducer size and input type; the expansion tank is required (see page 6.24).

					16	L									2E	L									3E	EL									4E	L				
$Q_{\mathbb{R}}$	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	A600	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
B3 B8	0,7	0,7	1,4	1,4	1,2	2,2	2	2	3,1	3	0,8	0,8	1,3	1,3	1,2	2,5	2,5	2,5	3	3	1	1	1,4	1,5	1,4	2,5	2,5	2,5	3,1	3,1	1,2	1,2	1,6	1,7	1,6	2,6	2,6	2,6	3,3	3,3
V1, V5	1,4	1,4	2,7	2,7	2,5	4,4	3,9	4	6,2	6,1	1,7	1,7	2,5	2,7	2,5	5	4,9	4,9	6,1	6	2	2	2,8	3	2,8	5	4,9	4,9	6,2	6,2	2,3	2,3	3,2	3,3	3,2	5,3	5,3	5,3	6,5	6,5
V3, V6	1	1,1	2,2	2,1	1,9	3,2	2,9	3	4,5	4,4	1,3	1,4		2,1	1,9	3,8	3,9	3,9	4,4	4,3	1,6	1,7	2,3	2,4	2,3	3,8	3,9	3,9	4,5	4,5	2	2	2,6	2,8	2,6	4,1	4,3	4,3	4,8	4,8

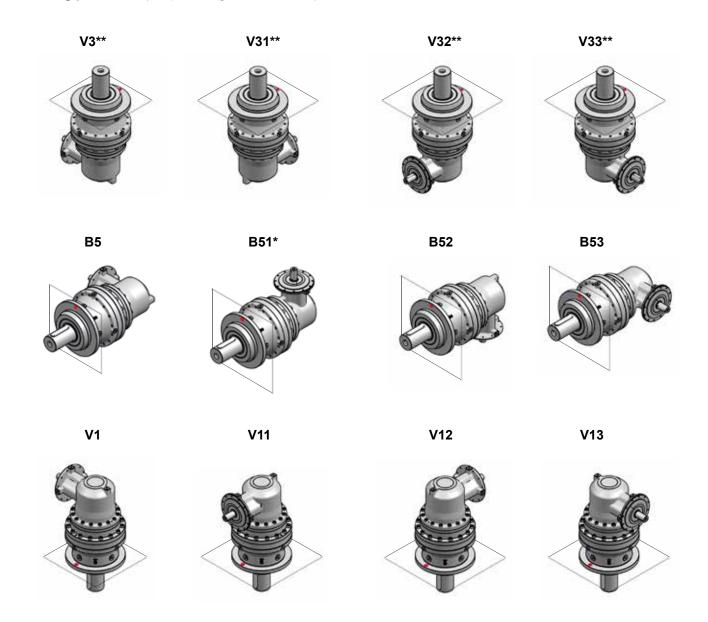

¹⁾ Stated oil quantities are approximate for provisioning. The exact quantity gear reducer is to be filled with is definitely given by the level.

022A ... 710A

Mounting positions¹⁾ (Output design ... F..., ... A...)

B5

V3**

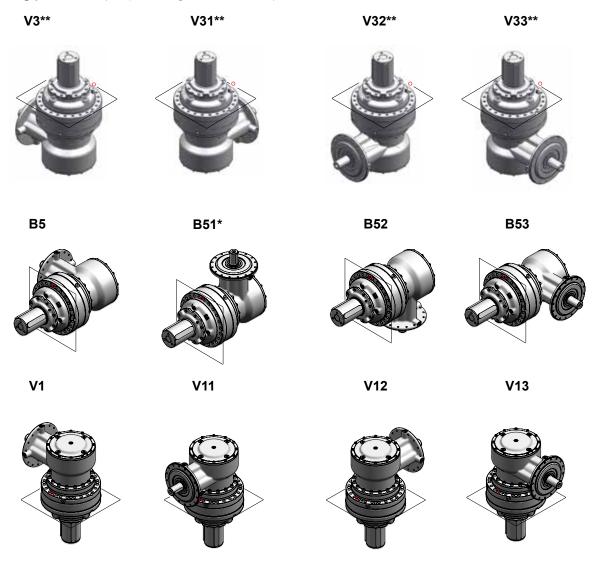

- Based on the motor size, the expansion tank is required (see page 6.24).
 Based on the output design, the expansion tank is required (see page 6.28).
 Reference hole for the identification of the mounting position.

		16	EL								2EL						
Q_{R}	030A	031A	042A	043A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	500A	710A
B5	2,8	4,3	4	5,4	2,5	3,9	5,4	4,8	6,2	6,4	7,2	13	21	30	43	56	81
V1	5,6	8,6	7,9	10,7	4,9	7,8	10,8	9,6	12,4	12,7	14,5	26	42	60	86	112	162
V3	5,6	4,6	7,9	5,6	2,5	7,8	6,8	9,6	7,3	12,7	14,5	26	42	60	86	112	162

							3EL													4EL						
Q_{R}	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	500A	710A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	500A	710A
B5	3	3,6	5	4,9	6,3	6,2	8,2	14	21	31	44	58	83	3,1	3,6	5,2	5	6,4	6,2	8,4	15	22	32	45	58	88
V1	5,9	7,1	10,1	9,8				28	42	62	88	116	166		7,3	10,3	10	12,8	12,4	16,8	30	44	64	90	116	176
V3	3,5	7,1	6	9,8	7,5	12,5	16,5	28	42	62	88	116	166	3,8	7,3	6,3	10	7,7	12,4	16,8	30	44	64	90	116	176

¹⁾ Stated oil quantities are approximate for provisioning. The exact quantity gear reducer is to be filled with is definitely given by the level.

Mounting positions¹⁾ (Output design ... F..., ... A...)

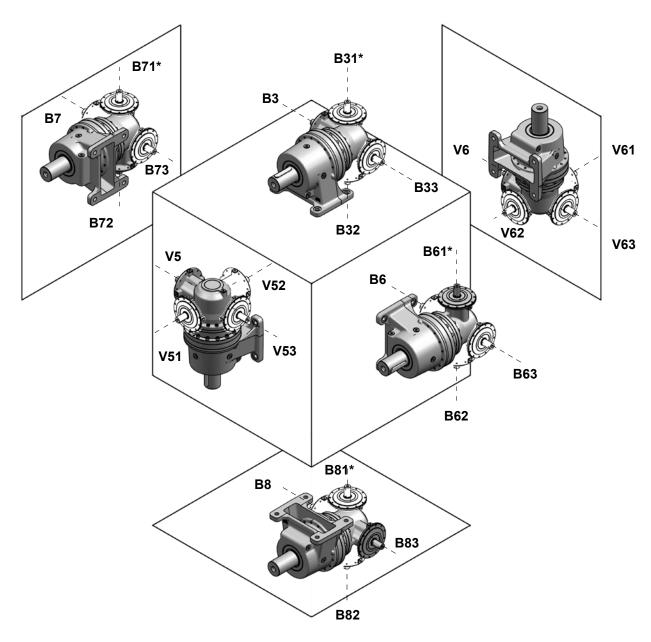

- Based on the motor size, the expansion tank is required (see page 6.24).
 Based on the output design, the expansion tank is required (see page 6.28).
 Reference hole for the identification of the mounting position.

					2E	В									3E	В									4E	В				
Q_{R}	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	A600	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
V3 V33	2	2,1	3,4	3,5	3,3	6,4	6,4	6,4	10,7	10,7	2,4	2,4	3	3,2	3	5,1	5,3	5,3	5,8	5,8	2,7	2,8	3,4	3,5	3,3	4,8	5	5	5,6	5,6
B5, B53	1,2	1,2	2	2	2								1,8								1,5			2	1,9	-	3			3,6
B51	2,4	2,4	3,9	4,1									3,6											4,1	3,9	6	6			7,3
B52	1,2	1,2	2	2	2	3,8	3,7	3,7	6,2	6,2	1,4	1,4	1,8	1,9	1,8	3,2	3,1	3,1	3,7	3,7	1,5	1,5	2	2	1,9	3	3	3	3,6	3,6
V1 V13	1,5	1,5	2,5	2,6	2,5	4,8	4,6	4,6	7,6	7,6	1,9	1,9	2,7	2,9	2,7	4,9	4,9	4,9	6	6	2,2	2,2	3	3,2	3	5,1	5,1	5,1	6,4	6,4

¹⁾ Stated oil quantities are approximate for provisioning. The exact quantity gear reducer is to be filled with is definitely given by the level.

022A ... 710A

Mounting positions¹⁾ (Output design ... F..., ... A...)

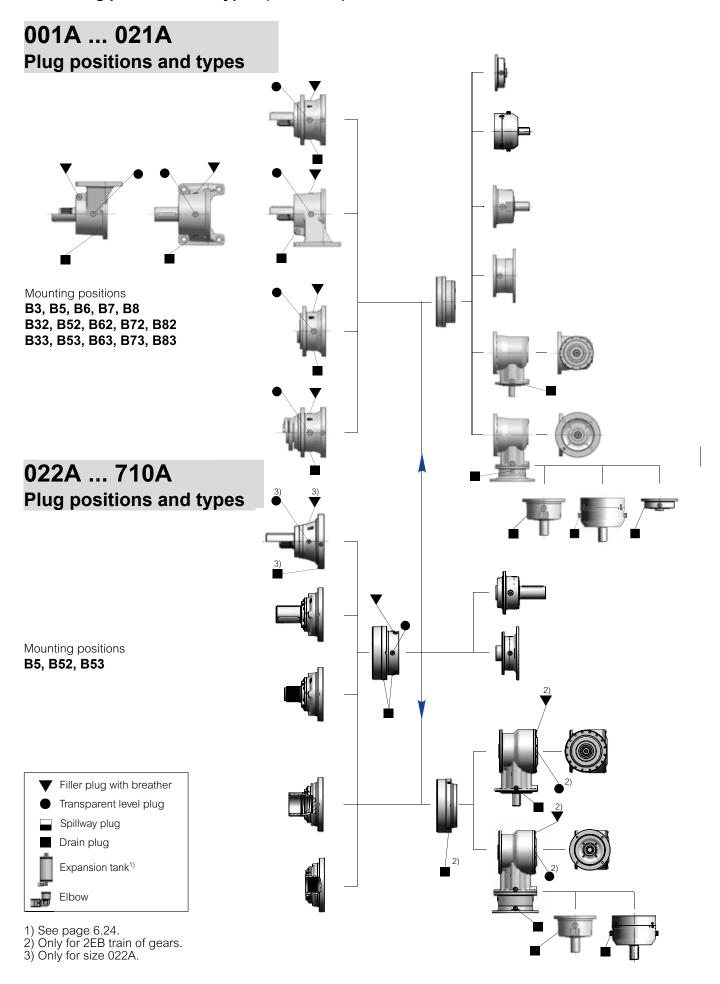


- Based on the motor size, the expansion tank is required (see page 6.24).
 Based on the output design, the expansion tank is required (see page 6.28).
 Reference hole for the identification of the mounting position.

		2EB 3EB 3EB																				4EB										
\mathbf{Q}_{R}	022A	030A	031A	042A	043A	060A 061A	085A	125A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	022A	030A	031A	042A	043A	060A 061A	085A	125A	180A	250A	355A	500A	710A
V3 V33	9,7	9	12,4	18,8		_	_	44	5,4	9,5	8,4	12,7			18,8	38	52			4,2	9,6	7,4	11,3			22,7	32	50	66	98	122	194
B5, B53	6	4,5	8,2	9,4	10,4	10	16,8	22	3,9	4,8	6,2	6,4	7,8	9,4	9,4	19	26	41	52	3,3	4,8	5,8	5,6	7	7	11,4	16	25	33	49	61	97
B51	12,1	9	16,5	18,8	20,8	20	33,5	44	7,9	9,5	12,5	12,7	15,5	18,7	18,8	38	52	82	104	6,6	9,6	11,5	11,3	14,1	14	22,7	32	50	66	98	122	194
B52	6	4,5	8,2	9,4	10,4	10	16,8	26	3,9	4,8	6,2	6,4	7,8	9,4	9,4	19	26	45	56	3,3	4,8	5,8	5,6	7	7	11,4	16	25	33	49	61	101
V1 V13	9,7	9	12,4	18,8	15,7	20	33,5	31	6,4	6,7	9,7	9,9	12,7	14	15,8	32	46	69	91	5,8	8,2	10,1	9,9	12,7	12,6	19,9	29	45	63	92	116	181

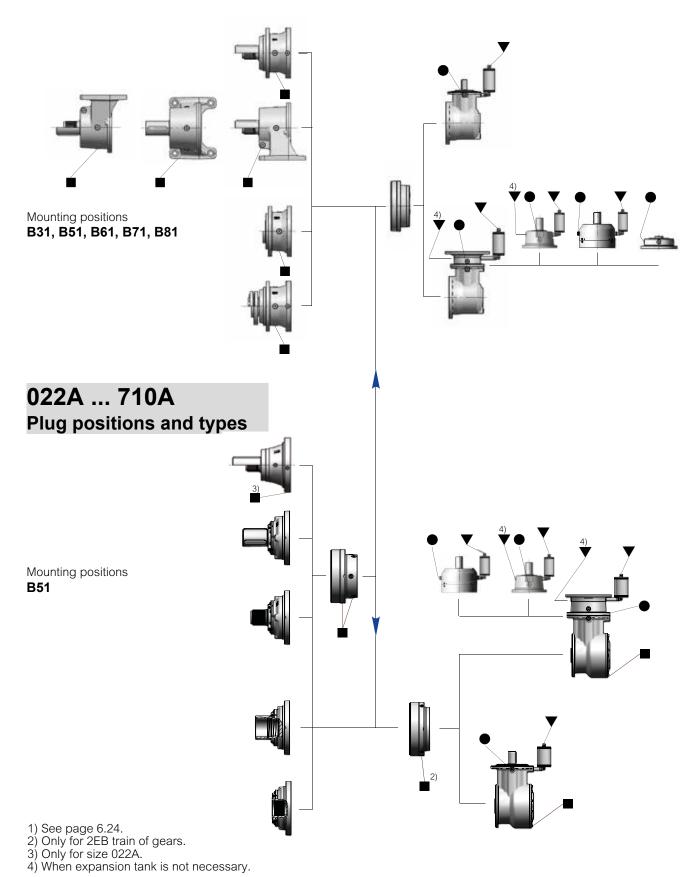
¹⁾ Stated oil quantities are approximate for provisioning. The exact quantity gear reducer is to be filled with is definitely given by the level.

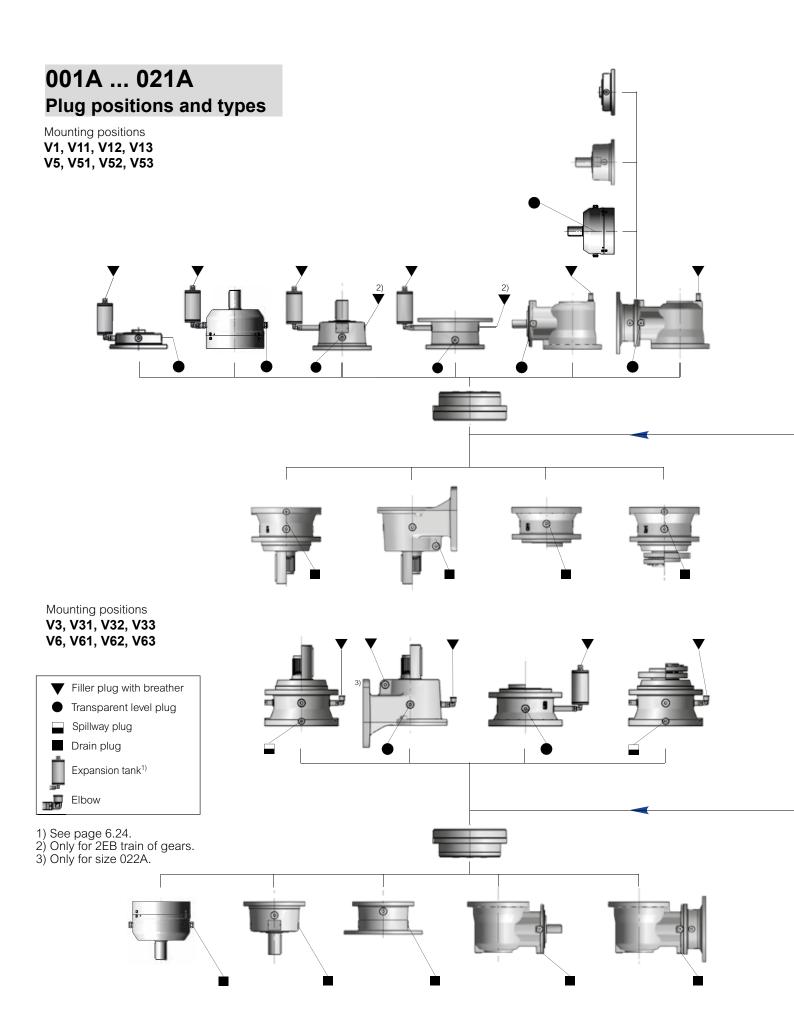
Mounting positions¹⁾ (Output design ... **P...**)



* Based on the gear reducer size and input type; the expansion tank is required (see page 6.24).

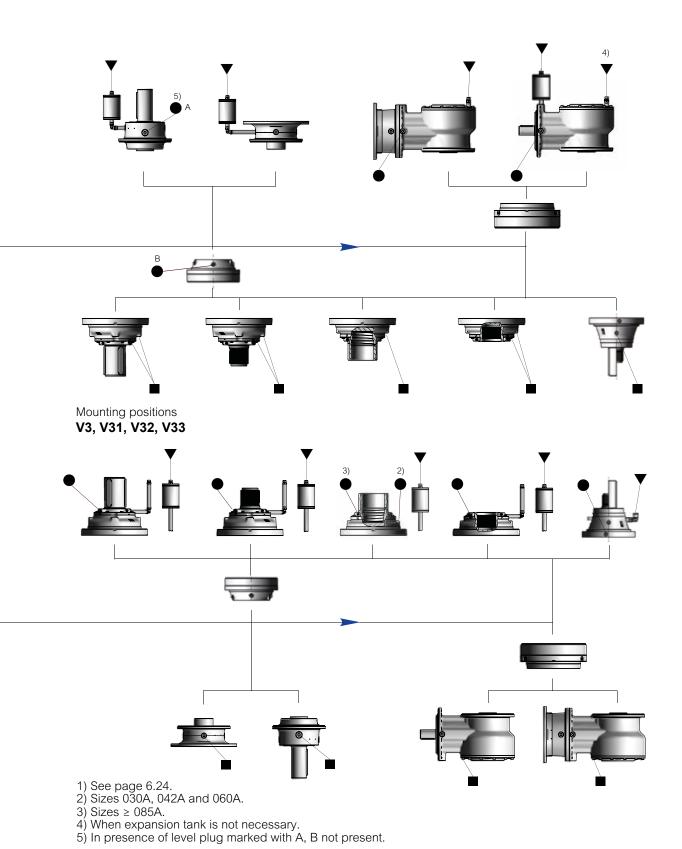
		2EB					3EB					4EB																		
Q_{R}	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A	001A	002A	003A	004A	006A	009A	012A	015A	018A	021A
B3 B8 B33 B83	1,2 1,2	1,2 1,2	2 2	2 2	2 2	3,8 3,8	3,7 3,7	3,7 3,7	6,2 6,2	6,2 6,2	,		1,8 1,8			3,2 3,2		3,1 3,1	'	3,7 3,7	1,5 1,5	,		2 2	1,9 1,9	3	3	3	3,6 3,6	
B31 B81 B32 B82	'	'	3,9 2	4,1 2	3,9 2	7,6 3,8			12,4 6,2				3,6 1,8		3,6 1,8			6,3 3,1			3,1 1,5			4,1 2	3,9 1,9	6 3	6 3	6 3	7,3 3,6	
V5 V53 V6 V63	1,5 2	1,5 2	2,5 3,4		2,5 3,3				7,6 10,7					2,9 3,2				4,9 5,3			2,2 2,7			3,2 3,5	3 3,3	5,1 4,8	5,1 5	5,1 5		6,4 5,6


¹⁾ Stated oil quantities are approximate for provisioning. The exact quantity gear reducer is to be filled with is definitely given by the level.


20.1 – Pug positions and types (EP series)

124 **Rossi**

Plug positions and types



022A ... 710A

Plug positions and types

Mounting positions V1, V11, V12, V13

UTD.123.2024-05.00_EN

Appendix

Parking brake PB series

General specifications

The parking brakes of PB series are spring applied and hydraulic released multi-disci brakes (steel discs alternating with discs with sintered bronze coating), to be used in combination with planetary gear reducers

They are not service brakes and cannot be used in dynamic conditions.

They are used to hold the load from application or to stop the machine in case of emergency.

The values of static braking torque $\mathbf{M}_{\text{Rstat}}$ given in the following table should be considered as nominal value and are valid for a brand new brake with correct lubrication.

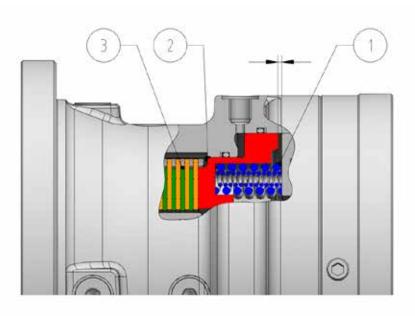
The tollerance on M_{Rstat} values is equal to +/- 10%. After some braking cycles, values of static braking torque could reduce by 5% and 10% due to the adjustment of discs.

Maximum counter-pressure admitted in brake supply pipe 0,5 bar.

Speed limit

The presence of a SAHR brake does not limit the values of n_{treak} and n_{treak} of the gear reducer stated in EP catalog.

ATTENTION: a continuous of frequent duty at high speed may generate an overheating of the group (previous paragraph).

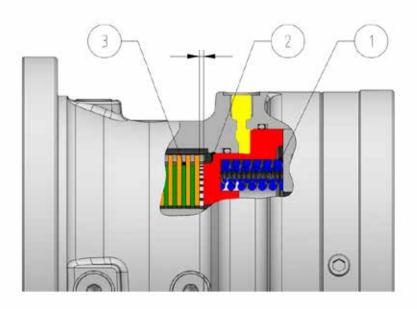

Operating conditions

 $Brakes\,are\,designed\,for\,industrial\,applications, at ambient temperature\,from\,-20\,^{\circ}C\,to\,+50\,^{\circ}C, maximum\,altitude$ 1000 m For operation at temperatures from -20 °C to 0 °C limit pmax to 200 bar.

Functioning of PB parking brakes

Brake closed

When no pressure is applied to the brake (0 bar) springs (1) apply a force to the piston (2) which lock the discs (3) and produce a nominal braking torque equivalent to $\mathbf{M}_{\text{Bstat}}$.



Brake opened

Above the pressure of 0 bar, the piston begins to compress the springs and the brake progressively reduces the braking torque.

When the release pressure exceeds the value of \boldsymbol{p}_{\min} the brake begins to open; once reached the value \boldsymbol{p} the brake is fully opened, the piston ends its displacement and the discs can rotate freely.

To ensure a long life of the brake, it is suggested to use a release pressure 50% above the value of ${\bf p}$ and in any case not higher than ${\bf p}_{\rm max}$.

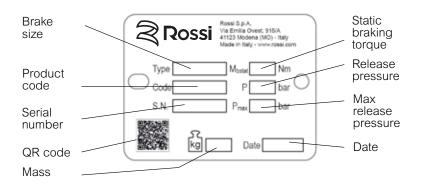
Technical data of PB parking brakes

PB10	PB10					0340	0420	0525	0650	0815	
Static braking torque	M _{Bstat}	[N m]	72	156	224	345	421	531	660	818	
Min opening pressure	$oldsymbol{ ho}_{min}$	[bar]	4.4	9.5	10.2	15.7	15.4	19.4	20.1	24.9	
Opening pressure	р	[bar]	6.9	14.9	16.1	24.7	24.2	30.4	31.6	39.1	
Max opening pressure	p _{max}	[bar]				30	00				
Max speed	n _{1max}	[min ⁻¹]	according to $\mathbf{n}_{\scriptscriptstyle{1\text{max}}}$ and $\mathbf{n}_{\scriptscriptstyle{1\text{peak}}}$ values of gear reducer								
Oil volume for opening	V	[1]	0.10								

PB30	PB30					0630	0800	1000	1250	1500	1700
Static braking torque	M _{Bstat}	[N m]	265	407	509	637	809	1010	1281	1529	1741
Min opening pressure	p _{min}	[bar]	7.6	11.8	11.8	14.7	15.6	19.4	24.7	25.2	28.7
Opening pressure	р	[bar]	12.0	18.5	18.5	23.1	24.5	30.5	38.7	39.6	45.1
Max opening pressure	p _{max}	[bar]					300				
Max speed	n _{1max}	[min ⁻¹]	$m{n}^{-1}$ according to $m{n}_{1_{\mathrm{max}}}$ and $m{n}_{1_{\mathrm{peak}}}$ values of gear reducer								
Oil volume for opening	V	[1]	[i] 0.12								

PB90	PB90					1800	2100	2600	3000	3550	4250
Static braking torque	M _{Bstat}	[N m]	869	1304	1552	1811	2173	2680	3063	3560	4305
Min opening pressure	p _{min}	[bar]	10.2	15.3	18.2	18.2	21.9	27.0	27.0	31.4	37.9
Opening pressure	р	[bar]	15.3	23.0	27.4	27.4	32.8	40.5	40.5	47.1	56.9
Max opening pressure	p _{max}	[bar]					300				
Max speed	n _{1max}	[min ⁻¹]	according to $\boldsymbol{n}_{\text{1max}}$ and $\boldsymbol{n}_{\text{1peak}}$ values of gear reducer						cer		
Oil volume for opening	V	[1]					0.25				

Other braking torque values on request.


Max counter-pressure admitted 0,5 bar.

The above performance is given with return pressure equal to 0 bar, any back pressure should be considered when sizing the system.

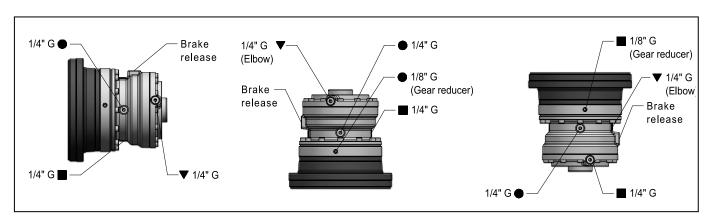
How supplied

Nameplate of PB parking brakes

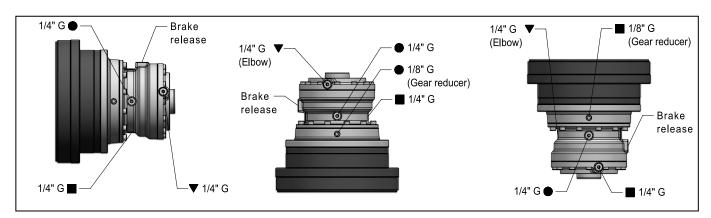
Every gear reducer is provided with a name plate in anodized aluminium containing main informations necessary for a correct identification of the product; the name plate must not be removed and must be kept integral and readable. All name plate data must be specified on eventual spare part orders.

Lubrication of PB parking brakes

PB series parking brakes require lubrication, and **are supplied without oil**, as specified on proper adhesive label.

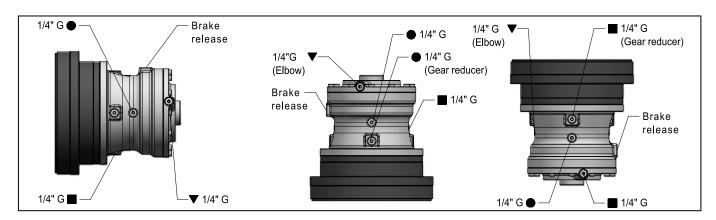

Before putting the brakes into service fill them with mineral oil ISO VG 32, unless otherwise prescribed by specific documentation. Hydraulic oils are generally suitable.

The separate lubrication prevents premature lubricant contamination in the gear reducer, increasing gears and bearings life.

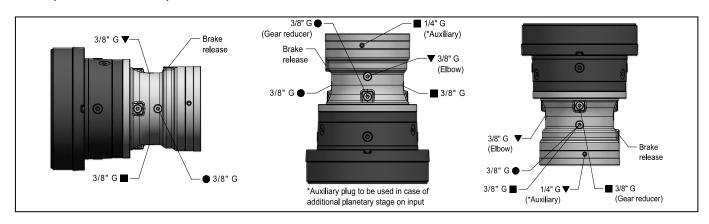

Mounting position and oil quantities

PB10 (001/002/C125/C160)

							Oi	l quant	ity
1EL	2EL	3EL	4EL	2EB	3ЕВ	4EB	В5	V1	V3
001A, 002A	001A006A	001A022A	001A061A	001A006A	001A022A	001A061A	0.09	0.06	0.16


PB10 (003/004/006/C200)

							Oi	l quant	ity
1EL	2EL	3EL	4EL	2EB	3ЕВ	4EB	В5	V1	V3
003A006A	009A022A	030A061A	085A180A	009A015A, 022A	030A043A	085A125A	0.09	0.06	0.16


Mounting position and oil quantities

PB30 (003/004/006/C200)

							Oi	l quant	ity
1EL	2EL	3EL	4EL	2EB	3EB	4EB	В5	V1	V3
003A006A	009A022A	030A061A	085A180A	009A015A, 022A	030A043A	085A125A	0.36	0.18	0.67

PB90 (009/012/015/C250)

							Oi	l quant	ity
1EL	2EL	3EL	4EL	2EB	3ЕВ	4EB	В5	V1	V3
009A015A	030A043A	085A125A	250A, 355A	018A, 021A, 030A	060A085A	180A, 250A	0.48	0.24	0.90

Oil quantities [I]

For mounting position B5 the exact oil quantity ghe gear reducer is to be filled with is definitely given by the level.

For mounting positions V1, V3 consider the oil quantities stated in the tables.

Commissioning

An inadequate commissioning can damage the gear reducer, the brake and compromise the correct operation of the application.

Do not disassemble and do not modify any brake component in order not to compromise the correct operation of gear reducer / brake.

Before commissioning verify that:

- gear reducer has been correctly installed and fixed to the machine
- gear reducer and brake are correctly lubricated. (oil level and grease quantity, if foreseen).
- lubricants are suitable.
- there is no lubricant leakage from plugs / seals
- oil level, drain plugs and their relevant vent valves are easily accessible
- during operation, max temperature of brake and/or gear reducer housing never exceeds admitted temperature (95°C for products on catalog)
- brake starts when machine shaft is stopped (static conditions)
- supply tube (opening and closing) is correctly connected to brake and no oil leakage is present.

For the supply of brake use mineral basis hydraulic oil; synthetic oils could damage and compromise the regular operation of brake.

Connect the hydraulic circuit to drive hole present on brake, after removing the protection plug.

Before using it, purge the air. Unscrew slightly the connector on drive hole, maintaining the pressure up to complete air leakage, then screw the connector again.

- supply pressure is sufficient to open completely the brake (higher than "opening pressure [p]" differing due to braking torque and brake type)
- during brake closure phase, the supply pressure is equal to 0 bar. Attention, eventual residual pressure in the supply tube helps to reduce the static braking torque $M_{\rm Rstat}$
- the drive and the possible drive valve are correctly installed and connected to brake

Maintenance

All maintenance activities must be executed in safe conditions.

At machine rest, verify at regular intervals (more or less frequently according to environment and use):

- a) all external surfaces are clean and air passages to gear reducer and brake are free, in order that cooling remains fully effective. An accumulation of dust impedes efficient heat disposal
- oil level and deterioration degree
- c) correct fastening screws tightening.

During operation, check periodically:

- vibration and noise level
- possible oil leakages
- possible pressure losses from brake supply area (possible losses from internal brake seals).

Attention. After a running period, gear reducer is subject to a light internal overpressure which may cause potentially burning liquid discharge. Therefore, before loosening whichever plug (filler plug included) wait until gear reducer has become cold. In all cases, always proceed with great care.

Oil change

Oil change of brake must be done according to the same gear reducer intervals.

Except specific cases, brake lubrication is separated from the gear reducer one, therefore it is necessary to act on the proper plugs present on brake.

Use only oil of the same type and viscosity and do not mix different oils.

It is adviced to change lubricating oil with warm brake, to avoid any deposits and to facilitate the output.

For the operations of oil drain and filling, use the specific plugs properly.

Seal change

Change the seals when disassembling or periodically checking.

ATTENTION: in case of a high increase of levels when checking lubricating oils, it could be caused by an oil leakage due to brake seal wear.

In this case it is necessary to stop gear reducer / brake and contact Rossi after sale service for repair.

Troubles: causes and corrective actions

If deviations from normal operation occur, refer to the following table. If deviations persist, consult Rossi.

Trouble	Possible cause	Corrective action
Oil leakage from seals	Seal stiffening due to long lasting storage	Clean the area and check the leakage after some hours of running
	Seal damage or wear	Consult Rossi
Multiple disc brake does not block	Residual pressure in the circuit	Verify the hydraulic circuit
	Worn discs	Consult Rossi
With running motor, gear reducer does not operate	Possible brake blocked	Verify hydraulic braking circuit
Excessive overheating	No lubricating oil	Add lubricating oil
	Disc brake does not open correctly	Verify pressure when brake opening
Multiple disc brake does not release	No pressure at brake	Verify brake connection
	Defect brake seals	Consult Rossi
Excessive vibrations	Internal trouble	Consult Rossi
Excessive noise level	Internal trouble	Consult Rossi

Dichiariazione UE di Conformità EU Declaration of Conformity

Rossi S.p.A. Via Emilia Ovest, 915/A 41123 Modena – ITALY

Rossi S.p.A., in qualità di fabbricante del prodotto stabilito nella Comunità (produttore), dichiaa sotto la nostra esclusiva responsabilità che l'apparecchiatura:

Riduttori e Motoridutori Serie A, E, G, H, iFIT, EP

avente numero di matricola: **xxxx** costruito nell'anno: **xxxx**

ai quali questa dichiarazione si riferisce, soddisfa i Requisiti Essenziali di Sicurezza e Salute (RESS) ad esso applicabili definiti dalle seguenti Direttive e successive integrazioni e/o modifiche:

Direttiva 2014/34/UE: allegato II

Il soddisfacimento dei sopracitati Requisiti (RESS) è stato assicurato applicando le seguenti norme:

Direttiva 2014/34/UE – Apparecchiature o sistemi di protezione destinati ad essere utilizzati in atmosfere potenzialmente esplosive

- EN 1127-1: 2019 "atmosfere esplosive parte 1: prevenzione dell'esplosione e protezione contro l'esplosione – concetti fondamentale e metodologia":
- EN ISO 80079-36: 2016 "atmosfere esplosive parte 36: apparecchi non elettrici destinati alle atmosfere esplosive –metodo e requisiti di base";
- EN ISO 80079-37: 2016 "atmosfere esplosive parte 37: apparecchi non elettrici destinati alle atmosfere esplosive tipo di protezione non elettrica per sicurezza costruttiva "c", per controllo della sorgente di accensione "b", per immersione in liquido "k"".

Ai sensi della Direttiva 2014/34/UE, l'apparecchiatura sopra menzionata riporta la seguente marcatura:

Rossi S.p.A., as the manufacturer of the product established in the Community (producer), declares under its exclusive responsibility that the equipment:

Gear reducers and Gearmotors Series A, E, G, H, iFIT, EP

having serial number: **xxxxx** manufactured in the year: **xxxx**

to which this declaration refers, satisfies Essential Health and Safety Requirements (EHSR) applicable to itself, defined by following Directives and successive integrations and/or modifications:

Directive 2014/34/EU: annex II

The satisfaction of above mentioned Requirements (EHSR) has been assured applying the following standards:

Directive 2014/34/EU – Equipment or protective system intended for use in potentially explosive atmospheres

EN 1127-1: 2019 "explosive atmospheres – part 1: explosion protection and protection - basic concepts and methodology";

EN ISO 80079-36: 2016 "explosive atmospheres – part 36: non-electrical equipment for explosive atmospheres - basic method and requirements":

EN ISO 80079-37: 2016 "explosive atmospheres – part 37: non-electrical equipment for explosive atmospheres – non-electrical type of protection constructional safety "c", control of ignition sources "b", liquid immersion "k"".

According to the Directive 2014/34/UE, above mentioned equipment reports the following marking:

II 2G Ex h IIB T3 Gb IPxx II 2D Ex h IIIC T135°C Db IPxx

Tamb. -20/+60 °C

Ai sensi della Direttiva 2014/34/UE, l'apparecchiatura sopra menzionata è oggetto, per gli aspetti relativi sia alla progettazione sia alla fabbricazione, del *controllo interno di fabbricazione* (Allegato VIII - Modulo A):

F.T. n° 2019/01.02-EX "X"

e depositato presso l'Organismo Notificato n° 0035 **TÜV Rheinland Industrie Service GmbH** Am Grauen Stein - 51105 Köln – Germany

con numero di deposito: 557/Ex-Ab 3029/19.

According to the Directive 2014/34/UE, above mentioned equipment is subject, relating to both of them design and production aspects, of internal control production (Annex VIII - Module A):

T.F. n° 2019/01.02-EX "X"

and deposited at the Notified Body n° 0035 **TÜV Rheinland Industrie Service GmbH** Am Grauen Stein - 51105 Köln - Germany

with deposit number: 557/Ex-Ab 3029/19.

Modena

Group Chief Technology Officer

Rossi S.p.A. Via Emilia Ovest 915/A 41123 Modena - Italy

info@rossi.com www.rossi.com

UTD.123.2024-05.00_EN

© Rossi S.p.A. Rossi reserves the right to make any modification whenever to this publication contents. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described.

The Customer is responsible for the correct selection and application of product in view of its industrial and/or commercial needs, unless the use has been recommended by technical qualified personnel of Rossi, who were duly informed about Customer's application purposes. In this case all the necessary data required for the selection shall be communicated exactly and in writing by the Customer, stated in the order and confirmed by Rossi. The Customer is always responsible for the safety of product applications. Every care has been taken in the drawing up of the catalog to ensure the accuracy of the information contained in this publication, however Rossi can accept no responsibility for any errors, omissions or outdated data. Due to the constant evolution of the state of the art, Rossi reserves the right to make any modification whenever to this publication contents. The responsibility for the product selection is of the Customer, excluding different agreements duly legalized in writing and undersigned by the Parties.